

engineering • surveying • natural resources

TECHNICAL MEMORANDUM

То:	Scott Langum, Town of Lakeview, Oregon	RED PROFRA
From:	Bryce Wininger, P.E.	TO A CONSERVER
Subject:	Town of Lakeview, Oregon - Water Treatment Facility Process and Technology Alternatives Analysis (Task 1D)	93380PE
Date:	September 9, 2022	OREGON HILL 12, 200 DEUSEN 109/09/2022 16:51
Job/File No.	214-01-24.2 (w/encl.)	DEUSEN 109/09/2022 16:51
cc:	Michele Parry, Town of Lakeview	RENEWS 06-30-24
	Dan Scalas, P.E., Adkins Engineering & Surveying, LLP	
	Amber Hudspeth, Hudspeth Land+Water	
	Jeremy Wenger, P.E., Fluent Engineering	
	Tawni Bean, Business Oregon	
	Larry Holzgang, Business Oregon	
	Kat Schwartz, Business Oregon	
	Troy Baker, P.E., Anderson Perry & Associates, Inc. (AP)	
	Lucas Stangel, P.E., AP	
	Austin Byrer, E.I., AP	

Introduction

The Town of Lakeview, Oregon, provides drinking water to residents within its urban growth boundary. The Town's sources include Wells No. 1, 2, 6, 7, 8, and 9 (herein referred to as Town Wells) that pump into a common line, one isolated well (North Well), and a spring. Water quality varies from each source, but collectively the Town's drinking water has issues with taste, odor, and color. These issues can generally be attributed to National Secondary Drinking Water Regulations (NSDWRs) water quality constituents including sulfates, iron, and manganese, in addition to hydrogen sulfide, which is not regulated by the U.S. Environmental Protection Agency (EPA). Secondary contaminants have aesthetic, cosmetic, and technical effects to water systems but do not present a risk to human health. Arsenic is also present in the Town's groundwater sources, more significantly in the North Well. As a National Primary Drinking Water Regulations (NPDWRs) contaminant, arsenic is regulated due to its hazard to human health. The North Well has arsenic concentrations above the maximum contaminant level (MCL) regulated by the EPA of 0.010 milligrams per liter (mg/L). Currently, the North Well is not used but may eventually be needed for additional production to meet demands as the Town grows. The Town's other wells have lower levels of arsenic, which have varied through time but are generally less than the MCL. The purpose of this Technical Memorandum (TM) is to evaluate available treatment technologies commonly used to remove arsenic, iron, and manganese from drinking water, provide a lifecycle cost

Sound Solutions

Scott Langum September 9, 2022 Page -2-

analysis for viable alternatives, and provide the Town with direction as to the next steps in the planning, procurement, and implementation of the preferred alternative.

Background

Anderson Engineering and Surveying, Inc., prepared a Water System Master Plan (WSMP) for the Town in 2019. The WSMP outlined water quality issues and proposed mitigation alternatives to improve water quality, including constructing separate filtration systems at each well, constructing a combined water treatment facility (WTF), and installing a transmission line from the North Well to the combined WTF. Prior to the preparation of this TM, the Town further refined viable alternatives to two options. The first is to construct a WTF at the North Well to remove arsenic and to construct a second WTF for the Town Wells to remove iron and manganese. The second alternative is to construct a transmission line from the North Well to the Town Wells and to construct a single WTF to remove iron, manganese, and arsenic from the combined sources. These alternatives are referred to further in this TM as Alternatives A and B, respectively, and are evaluated for cost, operation and maintenance, flexibility, and operator skill and attention.

To adequately evaluate the cost and operation of available treatment technologies for each alternative, first water quality samples were analyzed to determine specific constituents of the Town's water, which are provided in a separate TM included as an attachment. Next, WTF manufacturers were engaged to provide proposals for each treatment facility alternative considered. Last, based on the proposals received, a capital cost and present worth analysis was completed for each alternative. This information was evaluated to inform the Town of the most economical approach to address water quality issues.

The Water Quality Sampling, Testing, and Data Analysis (Task 1C) memo indicates the Town's North Well exceeds the NPDWRs' MCLs for arsenic and turbidity and the NSDWRs' secondary standards for iron, sodium, and total dissolved solids (TDS), while the Town Wells exceed the NPDWRs' MCL for turbidity and the NSDWRs' secondary standards for aluminum, color, iron, manganese, odor, and sodium. A brief discussion on the Town's critical water constituents of concern follows.

Arsenic

Arsenic is a semi-metallic element that is odorless and tasteless. It enters drinking water sources from natural deposits in the earth or from agricultural and industrial practices. Arsenic is found naturally in the geological formations around Lakeview and much of southeastern Oregon. The MCLs established by the EPA's primary drinking water regulations for arsenic are 0.01 mg/L, or 10 parts per billion.

Manganese

Manganese is a naturally occurring mineral present in rocks, soil, groundwater, and surface water and is also found in most foods. Manganese is an essential nutrient, and eating a small amount daily is important for human health. The MCL established by the EPA's secondary guidelines for manganese is 0.05 mg/L. Manganese readings above the MCL may result in black to brown water color, staining, and a bitter metallic taste. Scott Langum September 9, 2022 Page -3-

Iron

Iron is also a naturally occurring mineral present in both nature and many foods. The MCL established by the EPA's secondary guidelines for iron is 0.3 mg/L. Iron readings above the MCL may result in rusty (red or orange) water color, staining, and a metallic taste. Sediment issues may also occur.

Aluminum

Aluminum is an abundant metal in the earth's crust that can leach from rock and soil to enter groundwater. The MCL established by the EPA's secondary guidelines for aluminum is 0.05 to 0.2 mg/L. Aluminum above the secondary MCL may result in gray colored water.

рΗ

The pH of water can affect treatment options, and a low pH can be corrosive to metal pipes in distribution systems and places of use. The MCL established by the EPA's secondary guidelines for pH is 6.5 to 8.5. Low pH may result in bitter metallic taste and corrosive properties. A high pH may result in deposits or a baking soda taste.

Sulfates and Hydrogen Sulfide

Sulfates and sulfur compounds occur naturally in rocks and soils. Under anaerobic conditions, sulfurreducing bacteria produce hydrogen sulfide by chemical reduction of dissolved sulfate. This process can occur both subsurface prior to pumping from the aquifer and/or within the water distribution itself between the treatment system and the end consumer. Sulfate and hydrogen sulfide are not regulated by the EPA. However, sulfate can add a bitter taste to water and have a laxative effect. Hydrogen sulfide is an unpalatable gas, which can create odor and taste issues.

Regulatory Requirements

Arsenic is a contaminant listed by the NPDWRs, which are outlined by the EPA as legally enforceable standards that apply to public water systems. The primary standards are used for public health protection by the limitation of specifically identified constituents. Iron, manganese, hydrogen sulfide, and aluminum are water quality parameters of the NSDWRs, which are non-enforceable guidelines for the outlined contaminants.

Water Treatment Technologies

Many treatment technologies are available to remove the contaminants present in the Town's water. To remove iron and manganese, oxidization of soluble forms of iron and manganese to insoluble forms followed by filtration is commonly used. Filtration of the oxidized precipitates can be achieved using either a synthetic membrane or filter media. Arsenic removal can be achieved with technologies including ion exchange, adsorption, coagulation and filtration, oxidation and filtration, or reverse osmosis. The oxidation/filtration process described above to remove iron and manganese can also be used to remove arsenic when adequate iron is present to facilitate the coprecipitation of the two. A brief description of the treatment technologies follows.

Scott Langum September 9, 2022 Page -4-

Ion Exchange

Ion exchange is a reversible reaction in which a charged ion in a solution is exchanged for a similarly charged ion electrostatically attached to an immobile solid particle. This exchange process replaces the unwanted ions with ions that do not degrade water quality. Within ion exchange, three types of resins can be utilized: cationic, anionic, and specialty. Cation resins can remove iron and manganese but not arsenic. If an anionic resin is utilized, arsenic can be removed from the water. The economy of ion exchange depends on water quality conditions. Ion exchange resins are susceptible to early fouling when high levels of nitrates, sulfates, TDS, and turbidity are present.

Adsorption

Another technology commonly used to remove arsenic from drinking water is adsorption. The process is similar to ion exchange in that the positively charged media is used to remove the negatively charged arsenic ions. Media replacement costs can become expensive due to reduced media life when certain constituents are present that compete for absorption sites or clog the media. Phosphate and silica have been shown to compete for adsorption sites on iron-based sorbents. Silica, iron, manganese, and sulfates compete for adsorption sites on activated alumina.

Coagulation and Filtration

Coagulation and filtration are processes in which a chemical additive is used to create precipitates in water. For example, arsenic naturally occurs as a fine particle that floats in water. However, when a coagulant such as ferric chloride is added to the water, the arsenic bonds with the ferric chloride, creating larger, heavier particles that can either be settled out by gravity or filtered. This technology's efficiency for removing arsenic can be highly affected by the pH of the water as well as the molecular form of arsenic present. Arsenate [As(V)] is readily adsorbed by most coagulants. However, arsenite [As(III)] is not, and preoxidation must be utilized to convert As(III) to As(V).

Oxidation, Precipitation, and Filtration

Oxidation is commonly used to convert soluble forms of iron and manganese to insoluble forms prior to filtration. Either chlorine or potassium permanganate is injected and mixed into the stream to oxidize iron, manganese, hydrogen sulfide, and arsenic. When a sufficient iron to arsenic ratio is present (usually 20:1), the coprecipitation of iron and arsenic occurs, and filtration effectively removes both constituents from the stream. Filtration can be achieved with pressure media filters or membranes. In both cases, the filters will become clogged as insoluble compounds are filtered, and periodic backwash cycles are needed to facilitate regeneration of the media or cleaning of the membrane. The backwash water is either disposed of or sent to a settling tank. After particulates settle, the clarified water (called supernatant) is recovered by returning to the beginning of the treatment facility while the concentrated sludge is disposed of.

Both the coagulation/filtration and oxidation/precipitation/filtration processes described above can utilize either membrane type or media type filtration technologies. These processes can also be combined to produce an oxidation/precipitation/coagulation/filtration process. Membrane filters physically separate particles larger than the membrane pore size, which are retained on the membrane surface. Media filters utilize a number of different media types including silica sand, Greensand Plus, and pyrolusite. In addition to oxidation by means of a chemical feed upstream of Scott Langum September 9, 2022 Page -5-

the filters, these media also oxidize iron and manganese in place on the media surface. Because of this ability, a lesser amount of oxidation by chemical injection can be achieved.

Reverse Osmosis

Reverse osmosis is a membrane separation process that removes contaminants from water. This process forces water at a high pressure through a semi-permeable membrane and retains various constituents based on their size, weight, and charge. Reverse osmosis produces product water and concentrate. Product water is the water with substances that were able to pass through the membrane. Concentrate is the constituents that are unwanted in the system.

Treatment Facilities Alternatives

As detailed in the 2019 WSMP, the Town Wells pump into a common transmission line that discharges into the Town's water storage tanks. The North Well is outside town limits and pumps into a water storage tank, independent of the other wells. The North Well requires arsenic treatment to meet water quality standards, while the Town Wells require the removal of iron and manganese. Combining the sources would require the removal of all three constituents. Aside from the actual type of treatment system to be utilized, two alternatives, referred to as Alternatives A and B, were considered.

Alternative A includes constructing separate treatment systems for the North Well and combined water of the Town Wells. The North Well treatment system would have a capacity of 400 gallons per minute (gpm) and be designed to only remove arsenic. The combined water central treatment system would have a capacity of 2,000 gpm and be designed to only remove iron and manganese.

Alternative B includes constructing a single centralized WTF designed to treat all combined water sources. The North Well would be connected to the Town Wells through a new 14,500 linear foot transmission line. The central treatment system would have a capacity of 2,400 gpm and be designed to remove arsenic, iron, and manganese. pH adjustment would be needed for this alternative to facilitate the coprecipitation of iron and arsenic.

During preparation of this TM, a third alternative, Alternative C, was discussed with the Town. Alternative C includes deferring use of the North Well, increasing the capacity of the Town Wells by 400 gpm to make up the difference lost by the North Well, and constructing a single combined water central treatment system with a capacity of 2,400 gpm. The WTF would be designed to remove iron and manganese only. By deferring use of the North Well, arsenic removal would not be required until such time that the North Well is brought back online.

The Town has already purchased a property that will be utilized for the central treatment facility included in Alternatives A, B, and C. The specific site for Alternative A's North Well WTF has not been determined or considered for this evaluation.

Manufacturer's Proposals

Six manufacturers were engaged to provide water treatment system proposals for Alternatives A and B. Five proposals were received. Alternative C was not considered until after proposals were received. Therefore, proposals were not received specifically for Alternative C. The manufacturers' type of proposed treatment system for each alternative are shown on Table 1. Scott Langum September 9, 2022 Page -6-

MANUFACTURER PROPOSED TREATMENT SYSTEMS PER APPLICATION									
	Alte	Alternative B							
	North Well TreatmentCentral TrSystem - 400 gpm2,000 gpCapacity with ArsenicIron at		Central Treatment System - 2,400 gpm Capacity with Arsenic, Iron, and Manganese Removal						
Manufacturer	Removal Only	Removal Only							
Continental Carbon Group	O/C/P/F with dual media (GSP and ANTHRA) filtration	O/P/F with dual media (GSP and ANTHRA) filtration	O/P/F with dual media (GSP and ANTHRA) filtration						
Ovivo	C/F with 0.1-micron ceramic ultrafiltration membranes	C/F with 0.1-micron ceramic ultrafiltration membranes	C/F with 0.1-micron ceramic ultrafiltration membranes						
Tonka Water	O/P/F with Proprietary Media Filtration	O/P/F with Proprietary Media Filtration	O/P/F with Proprietary Media Filtration						
WesTech	O/C/P/F with dual media (ANTHRA and SIL) filtration	O/P/F with dual media (ANTHRA and SIL) filtration	O/C/P/F with dual media (ANTHRA and SIL) filtration						
Wigen	O/C/P/F with dual media (GSP and ANTHRA) filtration	O/P/F with dual media (GSP and ANTHRA) filtration	O/C/P/F with dual media (GSP and ANTHRA) filtration						

TABLE 1
MANUFACTURER PROPOSED TREATMENT SYSTEMS PER APPLICATION

ANTHRA - Anthracite

C/F - Treatment process utilizing coagulation and filtration

CCG - Continental Carbon Group

GSP - Greensand Plus media

O/C/P/F - Treatment process utilizing oxidation, coagulation, precipitation, and filtration

 ${\it O/P/F}$ - Treatment process utilizing oxidation, precipitation, and filtration

SIL - Silica sand

As shown on Table 1, various combinations of oxidation, coagulation, precipitation, and filtration were proposed by all manufacturers. Aside from Ovivo, the pressure vessel filtration systems proposed were similar in design, with some variation to the types and combinations of filter media, which included Greensand Plus, anthracite, and silica sand. Systems that included removing arsenic generally included the addition of a coagulant chemical feed system to aid in coprecipitation of iron and arsenic prior to removal. Ovivo was the only manufacturer to propose an alternative technology utilizing media filtration. CCG, Tonka Water, WesTech, and Wigen all proposed systems with similar cost, design, and operation, utilizing either vertical or horizontal pressure vessel filtration systems. AdEdge Technologies was contacted separately to consider the viability of an adsorption water treatment system. Due to water quality parameters and associated costs with replacing spent media, AdEdge responded that adsorption would not be a good candidate for this application.

All systems proposed above produce backwash water as a bioproduct of the treatment process. Backwash cycles continuously regenerate and clean filter media and membranes. Backwash water must either be disposed of or reclaimed through a settling tank and pump-assisted return line. Because the quantities of chemical feeds and backwash water produced have significant capital and life cycle costs, additional information was sought by the manufacturers regarding typical backwash and chemical feed rates. Scott Langum September 9, 2022 Page -7-

Another consideration of Alternative B is that the pH must be adjusted to less than 8.0 to facilitate the coprecipitation of iron and arsenic. Because the mixed well water associated with Alternative B has a pH greater than 8.0, the pH must be adjusted, ideally to 7.5. This operational consideration is discussed in more detail below. In contrast, lower pH significantly affects the oxidation rates of iron and manganese, creating further operational complications. These considerations in conjunction with the high cost of constructing the transmission line associated with Alternative B led to the development of Alternative C.

Figures 1 and 2 schematically show the treatment processes of pressure vessel media filtration and membrane filtration, respectively. Both systems show preceding oxidation and coagulation chemical feeds, and backwash reclaim systems. The need to utilize potassium permanganate as the oxidizing agent and use of coagulants may not be necessary if pilot studies demonstrate adequate removal utilizing only sodium hypochlorite. The primary difference between the systems is the physical means of filtration and regeneration and cleaning of media versus cleaning and scouring of the ceramic membranes. Figure 3 shows a typical site layout for either the 2,000 or 2,400 gpm treatment systems to be located on the Town's purchased property site.

Water Treatment System Life Cycle Cost Analysis

To determine the most economical water treatment approach for the Town, two cost analyses were developed for Alternatives A, B, and C. One analysis evaluates costs associated with using a membrane filtration technology, while the other evaluates costs associated with using a pressure vessel media filtration technology. Because the relative costs associated with pressure vessel media filtration were similar amongst the proposals received, the average cost of equipment and operational parameters were used to develop these analyses.

For this evaluation, the total capital cost and 20-year total present worth were evaluated under each option for each alternative. The total capital cost includes the procurement and installation of proposed equipment, and the manufacture and installation or construction of any additional ancillary facilities needed to provide the Town with a fully functional WTF. The costs include, but are not limited to, treatment equipment, buildings, backwash tanks, backwash sludge disposal facilities, and ancillary equipment and components.

The total present worth includes the total project cost as well as annual operation, maintenance, and replacements (OM&R) costs over a 20-year life cycle. These include, but are not limited to, labor, utilities, parts, sampling and testing, media replacement, chemical costs, and equipment replacement. Each system has different chemical feed rates. The values presented are preliminary based on manufacturer-provided best estimates for each system. For better accuracy, the dosing rates will be field-verified during a pilot program and associated costs will be adjusted prior to selection of the preferred system. Further detail is given below as to the primary considerations that affect costs with the various systems.

Equipment and Building Costs

Each proposed treatment system has different spatial requirements. This evaluation assumes the building needed to house treatment equipment will be a concrete masonry unit (CMU) structure with internal framing on a concrete slab foundation and reinforced concrete equipment pads as necessary. Pre-engineered steel frame structures may be considered to reduce capital costs, but CMU buildings are generally more robust and last longer than steel structures.

Scott Langum September 9, 2022 Page -8-

The water treatment building must be of sufficient size to house the treatment equipment, chemical feed stations, chemical storage, instrumentation and controls, and booster pumps, as well as any additional storage or office space the Town deems necessary for operations. The Town requested that the centralized treatment plant building should include four offices and a bathroom in addition to space needed for treatment and process equipment. An additional building footprint was included depending on the size of each manufacturer's proposed equipment. This generally includes the footprint of the equipment plus 10 feet on all sides for access and process piping connections. A 40 percent markup was applied to the manufacturer's budget proposal equipment costs for delivery and installation by the general contractor.

Backwash Facilities

Significant backwash volumes are produced at WTFs in most applications. Up to 95 percent of backwash volumes can be recovered and returned to the head end of the treatment plant. When backwash recovery facilities are not present, an increase in supply capacity results, which must be accounted for regarding source supply (installed pumping capacity) and maximum permitted water right withdrawal rates. Disposal of the backwash water must also be accounted for. Due to limited water rights, source capacity, and capacity of the existing wastewater collection and lagoon treatment systems to accept the backwash water volume and to promote water conservation, the Town should include backwash recovery facilities. Backwash facilities generally include backwash settling tanks, supernatant return lines with booster pumps, and sludge disposal facilities. The sludge disposal facilities consist of a lined evaporation pond, piping, and control structures. The pond surface area must be adequately sized to allow the liquid portion of the sludge disposed to evaporate. The pond storage volume must be adequate to store approximately two-thirds of the annual volume of sludge disposal. Backwash settling tanks should be sized for peak demand periods. Two tanks should be installed, each with the capacity to store the volume of one complete backwash cycle plus 15 percent.

Various water treatment systems and technologies produce different quantities of backwash water. Therefore, the cost associated with recycling backwash water for each individual system must be considered. Typical backwash volumes are best determined from pilot studies. Manufacturers can estimate backwash volumes based on water quality data for preliminary design purposes. Sizes of backwash tanks, pumps, and disposal facilities are based on estimated backwash volumes. This TM assumes preliminary backwash volumes provided with proposals received for evaluation purposes.

Other Equipment and Construction Costs

Costs common to all proposed treatment systems include backwash tank cathodic protection systems; mechanical; electrical; heating, ventilation, and air conditioning; plumbing work; chemical feed pumps and equipment; controls and instrumentation work; and standby power systems. The costs associated with this work are similar between various treatment systems with minor variations.

Chemical Costs

Water treatment requires various chemical feeds for the purposes of oxidation, coagulation, disinfection, facilitating media regeneration, and membrane cleaning when applicable. All proposed systems require oxidation of soluble forms of iron, manganese, and arsenic to insoluble forms. This

Scott Langum September 9, 2022 Page -9-

> is achieved by injecting either chlorine or potassium permanganate into the raw water stream. Chlorine is generally less expensive than potassium permanganate when used as an oxidizer, produces less quantities of sludge, and is easier to handle from an operational standpoint. Potassium permanganate may be needed if high chlorine feed rates result in disinfection byproducts, or when raw water pH is too low, which may result in an inadequate contact time for the oxidation of manganese. The use of potassium permanganate should be avoided if possible. Coagulation is needed for arsenic removal systems to facilitate coprecipitation of arsenic and iron. A pilot study will indicate which oxidizer will best suit the application and more accurately determine the anticipated chemical feed rates for each alternative.

Media Replacement Costs

Filter media will periodically require replacement as the media degenerates. Typically, this occurs every eight to ten years. Ovivo's ceramic membrane does not have media, but the membrane still needs to be inspected on a regular basis, and damaged membranes need to be replaced. Media replacement should be considered for life cycle present worth comparisons.

Total Capital Cost; Annual Operation, Maintenance, and Replacement; and Net Present Worth

To evaluate the most economical treatment system for the Town, two 20-year present worth analyses were completed for Alternatives A, B, and C. For each alternative, one present worth analysis assumes a membrane filtration technology is used, while the second assumes a media filtration is used. Total estimated construction costs include mobilization and furnishing and installing or constructing well and well pump station improvements, transmission lines, equipment, structures, backwash tanks, and sludge disposal evaporation ponds. Annual OM&R costs include labor, utilities, chemicals, filter media replacement (when applicable), and equipment replacement.

Table 2 presents the total estimated construction cost, total annual OM&R cost, and 20-year total present worth for each alternative. See Figures 4 through 9 for detailed cost estimates for each alternative option shown on Table 2.

Type of	Total Estimated Construction	Total annual OM&R	Total Present Worth						
Filtration	Cost (2022 Dollars)	(5 percent, 20 years)	(2022 Dollars)						
Alternative A									
Membrane	\$13.3 million	\$820,000	\$23.5 million						
Media	\$13.4 million	\$680,000	\$21.9 million						
Alternative B									
Membrane	\$13.3 million	\$540,000	\$19.9 million						
Media	\$14.1 million	\$450,000	\$19.7 million						
	Alternative C								
Membrane	\$10.4 million	\$510,000	\$16.8 million						
Media	\$11.2 million	\$430,000	\$16.6 million						

 TABLE 2

 TREATMENT TECHNOLOGY TOTAL PRESENT WORTH COMPARISON

As shown on Table 2, Alternative A is the most expensive option for both capital costs and annual OM&R, and Alternative C is the least expensive option for both capital costs and annual OM&R. For each alternative, the capital cost associated with utilizing a membrane filtration technology is lower than with

Scott Langum September 9, 2022 Page -10-

a media filtration type technology, but the annual OM&R is higher. Relatively speaking, the total present worth of utilizing a membrane filtration technology is similar to that of a media filtration type technology.

In comparison to pressure vessel media type filtration systems, membrane filtration will require more operator skill and attention. Membrane filtration will also require a greater number of chemical feeds, which further increases operator skill and attention. The primary disadvantage to Alternative A is that the Town would have to operate and maintain two WTFs compared with only a single facility for Alternatives B and C. The primary disadvantage to Alternative B is that to removal iron, manganese, and arsenic with a single system, the pH would need to be adjusted, which further increases chemical costs and operator skill and attention. Advantages of Alternative C in comparison to Alternatives A and B include, but are not limited to:

- Only a single combined water central treatment system is needed.
- Necessary improvements to the North Well Pump Station and construction of a new transmission line is removed from the cost of Alternative B.
- Neither ferric chloride nor pH adjustment is needed, effectively removing two chemical feed processes from the system, and reducing operator skill and attention.
- The system will create less backwash water and sludge in comparison to the other alternatives.

Based on a capital cost and net present worth analysis, it is recommended that the Town select Alternative C. The viability of this alternative must be confirmed with further investigation. If it is found that Alternative C is not viable due to limited source capacity and/or water rights, it is recommended that the Town select Alternative B.

Recommended Treatment Technology

Based on the information gathered, the recommended treatment technology for all alternatives is oxidation and filtration. Coagulation will be needed if the North Well is to be brought back online. Filtration by silica sand, Greensand Plus, or pyrolusite media is the likely candidate for this application. Membrane filtration may be considered; however, Ovivo, which was the only manufacturer to propose such a system, was unable to provide examples of similar installations using the proposed technology in the U.S. Without having examples of a proposed technology's implementation and success, it is not recommended the Town select such a system.

Conceptual Discussion of the Viability of Alternative C

Due to the high cost of treating the North Well for arsenic, or alternatively, piping the North Well to the central treatment facility with a transmission line and other upgrades, increasing the capacity of other Town Wells by 400 gpm was evaluated to preliminarily consider the viability of Alternative C. For each well, Table 3 shows the current installed pump capacity, current water right maximum withdrawal rate, initial yield during original construction, drawdown during initial yield test, and approximate pump setting below ground surface (BGS). Table 3 was used to determine if increasing the capacity of any combination of the Town's wells is a viable solution if the North Well is abandoned.

Scott Langum September 9, 2022 Page -11-

Well ID ¹	Existing Pumping Capacity	Maximum Permitted Withdrawal Rate (gpm)	Initial Yield (gpm)	Drawdown (feet BGS)	Maximum Potential Yield ² (gpm)	Water Quality
Well No. 2	550	0	500	N/A	N/A	Poor
Well No. 6	500	750	800	75	1,300	Poor
Well No. 7	550	600	1,200	55	2,500	Fair
Well No. 8	0 ³	350	350	181	300	Fair
Well No. 9	500	1,125	750	135	1,100	Poor
North Well	700	400				Poor

TABLE 3 CONCEPTUAL SOURCE CAPACITY EVALUATION

¹Well No. 1 is abandoned; therefore it is not included herein.

²Based on the measured specific capacity assuming pumping drawdown to 150 feet from the bottom of well as shown on the Oregon well log.

³Well No. 8 is currently plugged.

N/A = not applicable

As shown on Table 3, if the existing pumping capacities of Wells No. 6, 7, and 9 were increased to their maximum permitted withdrawal rates, the sources could supply the Town with the 2,400 gpm needed to meet the 2019 WSMP planning year's maximum daily demand. Due to the age of the wells, well and aquifer drawdown tests will be needed to confirm each well's ability to produce these rates before the viability of this alternative is confirmed.

Recommended Approach

The detailed design of a WTF depends heavily on the technology and specific equipment selected. The total building footprint, installation of process piping and ancillary equipment, backwash reclamation facilities, and sludge disposal facilities all depend on treatment performance, which differs between manufacturers and the type of media selected. To properly design a fully functional WTF, a specific manufacturer and type of media must be selected for use as the basis of final full-scale design. Additionally, the exact treatment efficiency cannot be precisely determined until a pilot study is performed. Because pilot studies are specific to a manufacturer's specific equipment, no single pilot study can guarantee the performance of various systems.

If a single manufacturer is selected for use as the basis of design prior to purchasing the equipment, the Town would lose the benefit of a competitive bid on equipment, and the selected manufacturer may use this to their advantage, increasing the cost of proposed equipment. To maintain the competitive bid process, it is recommended the Town of Lakeview issue a request for proposals (RFP) to solicit proposals from equipment vendors with the intent to select a preferred water treatment equipment package and pre-purchase and procure said package. The RFP would include contract documents and the technical specifications necessary for each equipment vendor to submit a proposal to the Town. Proposals should include, but not be limited to, the proposed equipment's installed footprint, cost, anticipated range of backwash volume and frequency, anticipated chemical feed rates, anticipated media replacement frequency and cost, range of operational flexibility (minimum and maximum flux rates), and list of similar installations. The proposal requirements will also include the design, delivery, set up and operation of a pilot study for the selected package to document and confirm that the proposed package

Scott Langum September 9, 2022 Page -12-

will effectively and efficiently treat the Town's water prior to moving forward with the full purchase of the package and 30 percent design.

Each RFP will be evaluated using a scoring matrix and weighted ranking criteria. Each RFP will be weighted on the equipment package and delivery cost, pilot study cost, operational flexibility, number of similar installations, required operator skill and attention, and annual chemical costs. The selected vendor will be required to complete a pilot study to confirm treatment performance. If the pilot study fails to meet performance indicated in the RFP, the Town will be given the option to consider other systems at no cost. If the pilot study confirms treatment performance but the Town decides not to select the equipment for other reasons, the Town will be responsible for the cost of the pilot study. The pre-purchased equipment package would then be used as basis of design for the full-scale WTF detailed design, and the selected vendor would be required to provide a process guarantee and bond to the Town as part of the purchase price and agreement. Upon completion and approval of the final design, the overall Water System Improvements project will be put out to bid using a competitive public bid process while the pre-purchased equipment is procured. The awarded contract for the Water System Improvements project will be town's pre-purchased treatment equipment package by the contractor.

The advantage for the Town of using this approach is that it retains the competitive bid process for the equipment and delivery costs, while allowing the Town to proceed with a final full-scale design of the WTF designed around the selected equipment. Due to long delivery times from disruptions to current supply chains, another advantage for this approach is that the equipment delivery time frame can coincide with detailed design and bidding of the other project elements. This process would expedite system construction and commissioning of the WTF.

Summary

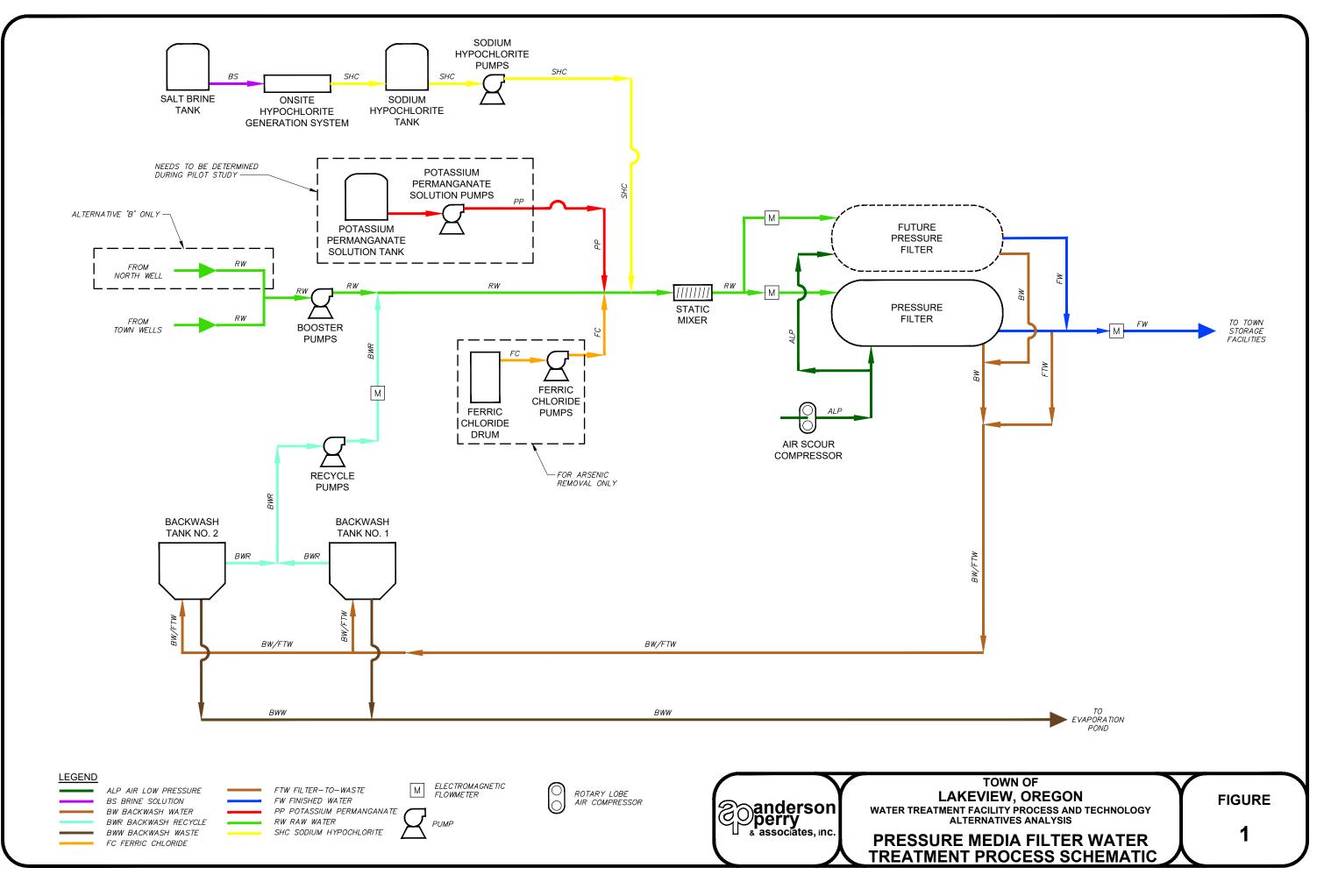
The purpose of this TM was to evaluate various treatment technologies and proposals received by manufacturers for equipment necessary to remove iron, manganese, and arsenic from the Town's drinking water and to inform the Town of the most economical alternative. The original scope of work included evaluation of two alternatives. Alternative A included installing one WTF to remove arsenic from the North Well, and a separate central WTF to remove iron and manganese from the Town Wells. Alternative B included the installation of a transmission line from the North Well to the Town Wells, and installing a single combined water central treatment system to remove iron, manganese, and arsenic from the combined water. Alternative C was proposed during the preparation of this TM and includes deferring use of the North Well, increasing the capacity of the Town Wells, and installing a single combined water central treatment or remove iron and manganese.

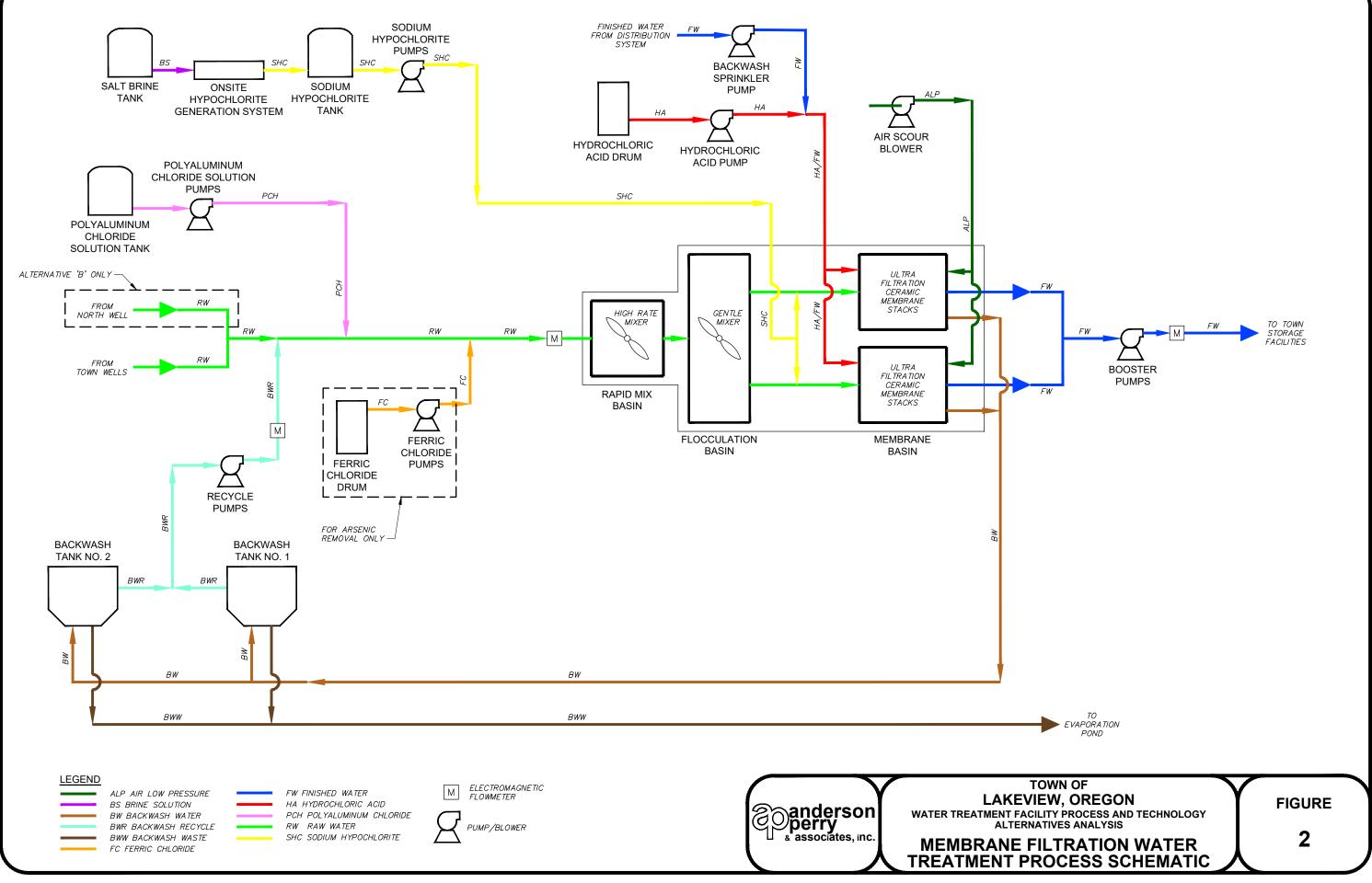
After review of the Town's water quality constituents and treatment system proposals received, it was determined that pressure vessel filters with either a Greensand Plus or pyrolusite media is the best candidate for any installation associated with the three alternatives. Proposals received for this equipment were similar in cost, application, and operation. However, some variations to anticipated backwash water quantities and chemical feed rates were received. Vendors stated in all cases that actual performance efficiency must be verified with a pilot study.

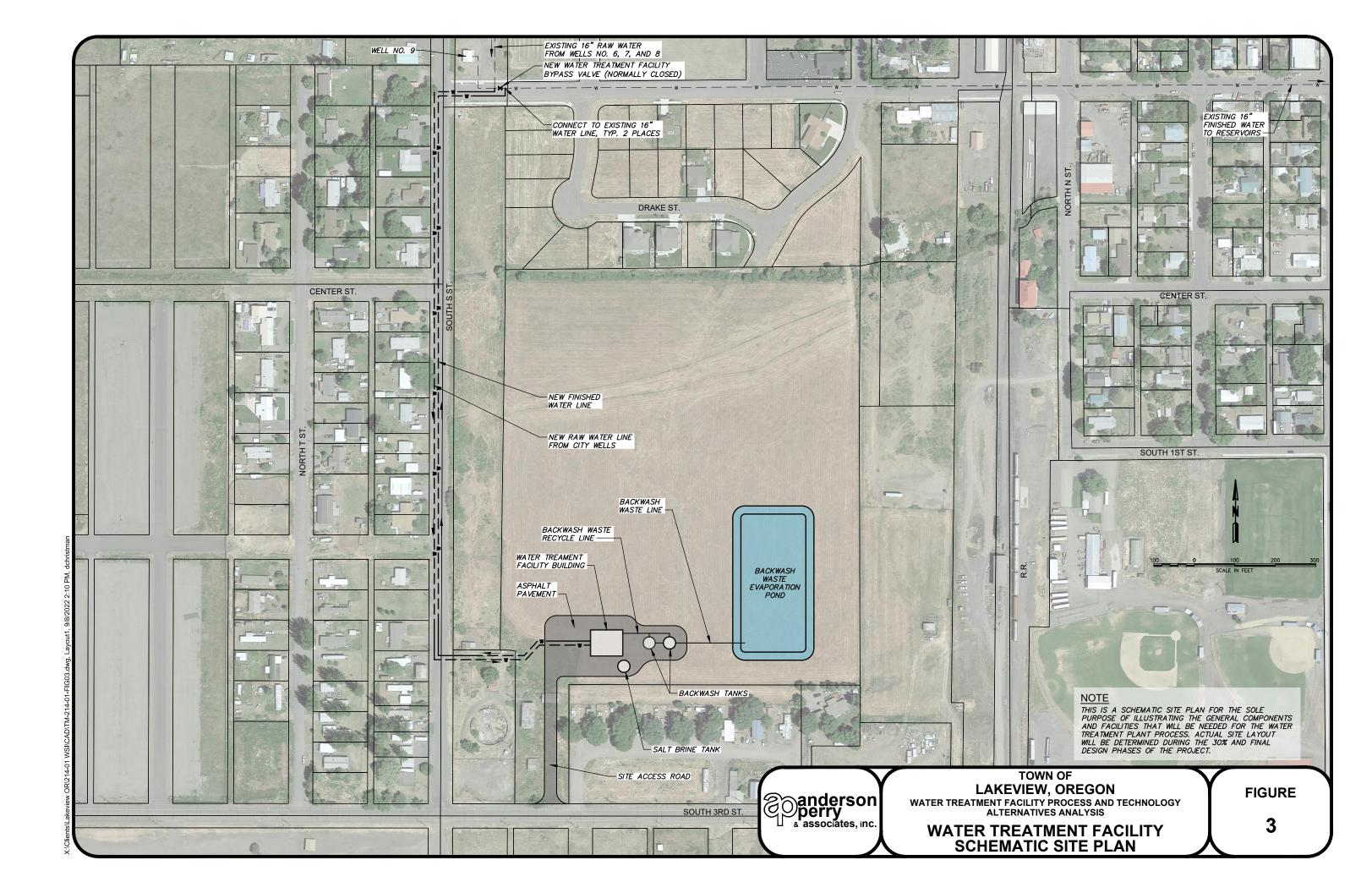
Treatment performance efficiency directly effects the size of facilities needed to provide the Town with a fully operational treatment system. Therefore, a pilot study of selected equipment must be completed to confirm performance, backwash rates and volumes, chemicals needed, and chemical feed

Scott Langum September 9, 2022 Page -13-

rates, which will then be used as the basis of design for the full-scale WTF. During the preparation of this TM, the Town decided to solicit as an RFP from treatment equipment vendors to select, pre-purchase, and procure equipment to use as the basis of design for the final design. The vendor will be required to verify treatment performance of the proposed equipment prior to the purchase.


After review of the alternatives and net present worth analysis, the Town decided that Alternative C is preferred. The preliminary analysis as presented herein shows that this alternative is likely viable. The design flows will be reevaluated during preliminary design. The maximum treatment capacity of 2,400 gpm was determined by the 2019 WSMP and includes anticipated flows by a new Red Rock Biofuels facility, which was anticipated to go online in 2020. The Red Rock Biofuels facility has yet to break ground and precise water demands by the facility are currently uncertain. The Town is considering installing only enough treatment to meet the Town's 20-year projected capacity without the Red Rock Biofuels facility but provide adequate space within the facilities to expand treatment if necessary. This would include installation of a WTF capable of treating up to 1,700 gpm, with adequate space and ancillary facilities designed to accommodate treatment up to 2,400 gpm.


LS/jg


Enclosures

https://andersonperry.sharepoint.com/sites/LakeviewOR/Projects/214-01 Water System Improvements/024-029 Preliminary Engineering/024 Report - Original/24.2 - Task 1D - Tech Memo WTF Alt. Analysis/Treatment Technology Memo.docx

FIGURES

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

Unit Number Nation Unit Number Nation Unit Number Nation Unit Number Nation 1 Modulization/Termodulization LS 9 500,000 All Rend d 9 500,000 2 Antichilation of Elesting Wells EA 750,000 All Rend d 5 50,000 2 Introduction of Elesting Wells EA 200,000 All Rend d 5 50,000 3 Rend Grubbing Are 5 50,000 All Rend d 5 50,000 7 Operating Mechanical Building SF 2 10,000 All Rend d 5 50,000 7 Operating Mechanical Building SF 2 10,000 All Rend d 1,450,000 8 Betwork LS 1,200,000 All Rend d 1,450,000 9 Betwork LS 1,200,000 All Rend d 1,450,000 10 Transmentic Explorment LS 1,200,000 All Rend d 1,450,000 11 Transmentic Explorment LS 1,200,000 All Rend d 1,200,000 11 Transmentic Explorment LS 1,200,000 All Rend d 1,200,000 12 Exploreital	NC	. DESCRIPTION	UNIT	UNIT PRICE	ESTIMATED	т	OTAL PRICE	
1 Meditization/Demokrization LS \$ 500,000 All Reqd \$ 500,000 2 And Cuality Control LS 75,000 3 225,000 3 Improvements to Existing Wells EA 200,000 5 1,000,000 4 Improvements to Existing Wells EA 200,000 5 1,000,000 7 Open and Grobbring Are \$ 5,000 All Reqd 5 5000 7 Open and Grobbring Are \$ 5,000 All Reqd 50,000 All Reqd 50,000 7 Open and Grobbring Are \$ 210 0,000 All Reqd 100,000 8 Boolon All Reqd 10,000 All Reqd 100,000 All Reqd 100,000 10 Beskwash Setting Tarks LS 10,000 All Reqd 00,000 11 Traitment Exauitant LS 10,000 All Reqd 00,000 11 Beskwash Setting Tarks LS 10,000 All Reqd 00,000 12 Mechanization And All LS 15 000,000 All Reqd			ontr	GIATTICE	QUANTITY		OTALITAGE	
and Quality Control 4. Improvements to Existing Wells Pung EA 200,000 5 1,000,000 7. Ceneral Subtotal 7. 1,000,000,000,000,000,000,000,000,000,0			LS	\$ 550,000	All Req'd	\$	550,000	
3 Rehabilitation of Existing Wells Pump Station EA 7:000 3 225:000 General Subtotal \$ 1,860,000 North Well Treatment Facility 5 Clearing and Grubbing Acre \$ 5:000 1 \$ 5:000 7 Operating/Mechanical Building SF 2:10 3:100 6:0000 7 Operating/Mechanical Building SF 2:10 3:000 6:0000 8 Exponzation Fond Liner SF 1:20 20:000 All Reqd 10:0000 10 Backwash Setting Tanku Lis 1:00:000 All Reqd 10:0000 12 Electricultion, and Air Lis 2:00:000 All Reqd 10:0000 13 Sodum Hypochinets System Lis 10:000 All Reqd 30:000 14 Healing, Verillation, and Air Lis 2:00:000 All Reqd 30:000 14 Healing, Verillation, and Air Lis 2:00:00 All Reqd 30:000 15 Sodum Hypochinets System Lis 1:0:00 All Reqd 30:000	2		LS	75,000	All Req'd		75,000	
4 Improvements to Existing Well Pump EA 200.000 5 1.000.000 Normal Subton 5 1.000.000 5 1.000.000 Normal Subton 5 5.000 1 8 5.000 6 Sile Work LS 80.000 1.000.000 8 50.000 6 Sile Work LS 80.000 1.000.000 8 50.000 7 General Subton CY 6 1.000.000 4 60.000 8 Evaporation Pond Liner LS 1.000.000 AI Req0 1.000.000 9 Evaporation Pond Liner LS 1.000.000 AI Req0 1.000.000 10 Internant Equipment LS 1.000.000 AI Req0 1.000.000 11 Hoating, Ventilation, and Air LS 1.000.000 AI Req0 1.000.000 12 Chemitan Hoatine LS 1.000.000 AI Req0 1.000.000 12 Chemitan Hoatine LS 1.000.000 AI Req0 <t< td=""><td>3</td><td></td><td>FA</td><td>75 000</td><td>3</td><td></td><td>225 000</td></t<>	3		FA	75 000	3		225 000	
North Well Treatment Facility Acre S 5.000 1 S 5.000 1 Clearing and Grubbing Acre S 5.000 All Req1 S 5.000 2 Clearing and Grubbing SF 210 3.100 651.000 2 Exponsion FOR December 1 SF 120 20.000 All Req1 1.450.000 2 Exponsion FOR December 1 S 1.450.000 All Req1 1.450.000 1 Treatment Exponent LS 200.000 All Req1 30.000 1 Electrical Work LS 30.000 All Req1 30.000 1 Electrical Work LS 100.000 All Req1 30.000 1 Electrical Work LS 10.000 All Req1 30.000 1 Controls and Instrumentation Work LS 175.000 All Req1 30.000 2 Chearing and Cluubhing Crel S 2.000 All Req1 5.000 2 Chearing and Cluubhing Crel S 2.000 <td></td> <td>Improvements to Existing Well Pump</td> <td></td> <td></td> <td></td> <td></td> <td></td>		Improvements to Existing Well Pump						
5 Clearing and Grubbing Arr 8 5.000 1 \$ 5.000 7 Operating/Mechanical Building SF 210 3.100 651.000 8 Evaporation Pond Exeavation SF 1.20 20.000 44.000 10 Backwash.Settling Tanks LS 1.000 All Reqd 1450.000 11 Treatment Equipment LS 1.450.000 All Reqd 150.000 12 Mechanical Work LS 200.000 All Reqd 200.000 13 Electrical Work LS 200.000 All Reqd 50.000 14 Heating, Ventilation, and Air LS 50.000 All Reqd 50.000 15 Sodum Hypochionite System LS 100.000 All Reqd 40.000 17 Chemisal Feed Purps and Equipment LS 50.000 All Reqd 40.000 16 Functional Functional All Reqd 40.000 All Reqd 40.000 17 Cheminal Facility Incender LS 20.000 All Reqd 40.000 12 Di				G	eneral Subtotal	\$	1,850,000	
6 Site Vark LS 8.0.000 All Redd 90.000 7 Steparation Pond Excavation/ CY 60 1,000 60.000 8 Evaporation Pond Liner SF 1.20 20.000 24.000 9 Evaporation Pond Liner SF 1.20 20.000 24.000 11 Treatment Equipment LS 100.000 All Redd 1.450.000 12 Becknash Setting Tanks LS 200.000 All Redd 200.000 13 Electrical Work LS 200.000 All Redd 30.000 14 Heading, Vertilation, and Air LS 30.000 All Redd 30.000 14 Heading, Vertilation, and Air LS 30.000 All Redd 30.000 15 Sodium Hypochicated System LS 175.000 All Redd 30.000 16 Centrols and Instrumentation Work LS 27.000 All Redd 40.000 20 Clearing and Grubbing Are * 5.000 2 \$ 10.000 20 Clearind and Automatic Tranefer LS <td>Nor</td> <td>th Well Treatment Facility</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Nor	th Well Treatment Facility						
7 Operating/Mechanical Building SF 210 3,100 65,000 9 Evaporation Pond Liner SF 1,20 20,000 24,000 10 Backwash Setting Tanks LS 100,000 All Reqd 100,000 11 Treatment Equipment LS 200,000 All Reqd 200,000 12 Mechanical Work LS 200,000 All Reqd 200,000 13 Electrical Work LS 200,000 All Reqd 30,000 14 Heating Ventilation, and Ar LS 50,000 All Reqd 30,000 15 Sodium Hypocholite System LS 50,000 All Reqd 40,000 16 Plumbing LS 30,000 All Reqd 40,000 16 Controlis and Instrumentation Work LS 120,000 All Reqd 40,000 17 State Mater/Finished Water Pipelines LF 140 40,000 560,000 21 State Water/Finished Water Pipelines LS 220,000 <td< td=""><td></td><td>0 0</td><td></td><td></td><td></td><td>\$</td><td></td></td<>		0 0				\$		
8 Evaporation CY 60 1.000 60.000 9 Evaporation Pond Liner SF 1.20 20.000 24.000 10 Backwash Setting Tanka LS 1.40.000 All Req'd 1.45.000 11 Treatment Equipment LS 1.40.000 All Req'd 20.000 12 Mechanical Work LS 20.000 All Req'd 20.000 13 Electrical Work LS 20.000 All Req'd 30.000 14 Backwash Setting Tanka LS 30.000 All Req'd 30.000 15 Sodum Hypochorite System LS 10.000 All Req'd 40.000 16 Controls and Instrumentation Work LS 175.000 All Req'd 40.000 18 Sodum Hypochonical System LS 175.000 All Req'd 10.000 20 Chentral Treatment Facility Sodum Hypochonical System LS 175.000 All Req'd 40.000 20 Depratanython-chance Mutanter LF				/	-			
Embankment 1.0 20,000 24,000 10 Backwash Settling Tanks LS 100,000 All Req'd 100,000 11 Treatment Equipment LS 100,000 All Req'd 100,000 12 Mechanical Work LS 200,000 All Req'd 200,000 14 Heating, Ventilation, and Air LS 50,000 All Req'd 30,000 15 Sodum Hypochtorite System LS 50,000 All Req'd 30,000 17 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 40,000 18 Controls and Instrumentation Work LS 175,000 Controls and Instrumentation Work LS 20,000 19 Generator Set and Automatic Transfer LS 20,000 All Req'd 40,000 21 Site Work LS 20,000 All Req'd 50,000 2 10,000 23 Raw Water/Finished Water Pipelines LF 140 40,000 25 20,000 26 20,000 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
9 Evaporation Prond Liner SF 1.20 20.000 24.0000 11 Treatment Equipment LS 1.49.000 All Reqd 1.49.000 13 Electrical Work LS 200.000 All Reqd 200.000 14 Heating, Verilation, and Air LS 50.000 All Reqd 30.000 14 Heating, Verilation, and Air LS 50.000 All Reqd 30.000 15 Soduen Hypocholorits System LS 100.000 All Reqd 30.000 16 Plumbing LS 30.000 All Reqd 30.000 16 Controls and Instrumentation Work LS 175.000 All Reqd 175.000 16 Controls and Automatic Transfer LS 20.000 All Reqd 20.000 27 Raw Water/Finished Water Pipelines LF 140 4.000 560.000 28 Raw Water/Finished Water Pipelines LF 1.20 70.000 84.000 28 Rewatsasteffinabed Water Pipelines LF	8	•	CY	60	1,000		60,000	
10 Backwash Setting Tanks LS 100,000 All Reqd 100,000 12 Mechanical Work LS 200,000 All Reqd 200,000 14 Heating Uverilation, and Air LS 50,000 All Reqd 200,000 14 Heating Uverilation, and Air LS 50,000 All Reqd 30,000 15 Sodium Hypochlorite System LS 30,000 All Reqd 30,000 16 Controls and Fastmentation Work LS 175,000 All Reqd 40,000 16 Controls and Automatic Transfer LS 40,000 All Reqd 40,000 20 Generator Sale and Automatic Transfer LS 20,000 All Reqd 40,000 21 Bite Work LS 220,000 All Reqd 220,000 22 Raw Water/Finished Water Pripelines LF 140 40,000 50,000 22 Raw Water/Finished Water Pripelines LF 120 70,000 84,000 23 Backwash Setting Tanks LS	9		SF	1.20	20,000		24,000	
12 Mechanical Work LS 200,000 All Regid 200,000 14 Heating, Ventilation, and Air LS 50,000 All Regid 50,000 15 Sodium Hypochlorite System LS 100,000 All Regid 50,000 15 Sodium Hypochlorite System LS 100,000 All Regid 50,000 16 Controls and Instrumentation Work LS 15,000 All Regid 40,000 16 Controls and Instrumentation Work LS 12,000 All Regid 40,000 20 Glearing and Grubbing Acres \$ 50,000 All Regid 20,000 21 Site Work LS 220,000 All Regid 220,000 22 Raw Water/Finished Water Pipelines SF 50 2.770 135,000 23 Raw Water/Finished Water Pipelines SF 1.20 70,000 80,000 24 Aperating/Mechanical Building SF 1.20 70,000 80,000 25 Evaporation Pond Exacavation <td>1(</td> <td></td> <td>LS</td> <td></td> <td></td> <td></td> <td></td>	1(LS					
13 Electrical Work LS 200,000 All Regid 50,000 14 Heading, Wenklation, and Air LS 100,000 All Regid 50,000 15 Sodum Hypochlorite System LS 100,000 All Regid 50,000 16 Plumbing LS 100,000 All Regid 50,000 16 Chemical Feed Pumps and Equipment LS 175,000 All Regid 40,000 17 Controls and Instrumentation Work LS 175,000 All Regid 40,000 16 Central Teatment Facility LS 200,000 All Regid 40,000 20 Clearing and Grubbing Acre S 50,000 2 S 10,000 21 Site Work LS 220,000 All Regid 220,000 28 Subtool 70,000 80,000 22 Rew Water/Finished Water Pipelines SY 50 2.700 135,000 24 Operating/Mechanical Building SF 1,20 70,000 84,000 25 Evaporation Pond Liner SF 1,20 70,000	11	Treatment Equipment	LS	1,450,000	All Req'd		1,450,000	
1 Heating, Ventilation, and Air Conditioning (HVAC) LS 50,000 All Reqd 50,000 15 Sodium Hypochlorite System LS 100,000 All Reqd 30,000 16 Controls and Instrumentation Work LS 175,000 All Reqd 40,000 16 Controls and Instrumentation Work LS 175,000 All Reqd 40,000 17 Chemical Feed Pumps and Equipment LS 40,000 All Reqd 40,000 18 Controls and Instrumentation Work LS 20,000 All Reqd 40,000 19 Generator Set and Automatic Transfer LS 40,000 All Reqd 40,000 20 Clearing and Grubbing Acre \$ 5,000 2,5,000 4ll Reqd 220,000 21 Stew Water/Finished Water Pipelines EF 140 4,000 550,000 4ll Reqd 220,000 26 Evaporation Pond Excavation/ CY 60 2,100 126,000 21 Backwash Setting Tanks LS 250,000 All Reqd </td <td>12</td> <td>2 Mechanical Work</td> <td>LS</td> <td>200,000</td> <td>All Req'd</td> <td></td> <td>200,000</td>	12	2 Mechanical Work	LS	200,000	All Req'd		200,000	
15 Sodum Hypocholite System LS 100.000 All Reqd 100.000 16 Plumbing LS 30.000 All Reqd 50.000 16 Plumbing LS 50.000 All Reqd 50.000 16 Centrols and Instrumentation Work LS 175.000 All Reqd 40.000 17 Colearing and Grubbing Acre \$ 5.000 2 \$ 10.000 21 Stew Water/Finished Water Pipelines LF 21.00 22.000 2.8000 20.000 22.8000 22.8000 22.8000 22.8000 23.8000 22.8000 23.8000 22.8000 23.8000 22.8000 23.8000 22.8000 23.8000 22.80000 23.8000 22.80000 23.8000 22.80000 24.8000 26.80000 25.80000 24.8000 26.80000 25.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.8000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80000 26.80								
15 Sodum Hypochiorie System LS 100.000 All Regid 30,000 16 Cohmical Feed Pumps and Equipment LS 50,000 All Regid 50,000 18 Controls and Instrumentation Work LS 175,000 All Regid 40,000 19 Generator Set and Automatic Transfer LS 40,000 All Regid 40,000 20 Clearing and Grubbing Acre \$ 5,000 2 \$ 10,000 21 Sitte Work LS 220,000 All Regid 220,000 22 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 23 Raw Water/Finished Water Pipelines SF 210 3,800 798,000 24 Operating/Mechanical Building SF 210 3,800 798,000 25 Evaporation Pond Excavation CY 60 2,100 126,000 26 Evaporation Pond Excavation LS 250,000 All Regid 450,000 26 Evaporation Pond Excavation LS 25,000 All Regid 450,000 27 Ba	14		LS	50,000	All Req'd		50,000	
16 Plumbing LS \$30,000 All Req'd \$50,000 17 Chemical Feed Pumps and Equipment LS \$50,000 All Req'd \$175,000 19 Generator Set and Automatic Transfer LS \$40,000 All Req'd \$175,000 19 Generator Set and Automatic Transfer LS \$40,000 All Req'd \$20,000 20 Clearing and Grubbing Acre \$50,000 2 \$10,000 21 Site Work LS 220,000 All Req'd \$20,000 22 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 23 Raw Water/Finished Water Pipelines SF 1.20 70,000 84,000 24 Operating/Mechanical Building SF 1.20 70,000 84,000 24 Evaporation Pond Liner SF 1.20 70,000 84,000 25 Evaporation Pond Liner SF 1.20 70,000 84,000 26 Evaporation Pond Liner SF 1.20 70,000 84,000 26 Evaporation Pond Liner	14		LS	100 000	All Reald		100.000	
17 Chemical Feed Pumps and Equipment LS 50,000 All Reqd 175,000 19 Generator Set and Automatic Transfer North Well Treatment Facility Subtotal \$ 3,215,000 20 Clearing and Grubbing Acre \$ 5,000 All Reqd 40,000 20 Clearing and Grubbing Acre \$ 5,000 All Reqd 220,000 21 Site Work LS 22,000 All Reqd 220,000 22 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 22 Raw Water/Finished Water Pipelines SF 1,20 70,000 84,000 23 Faw Water/Finished Water Pipelines LS 2,50,000 All Reqd 2,63,000 24 Operating/Mechanical Building SF 1,20 70,000 84,000 25 Evaporation Pond Liner SF 1,20 70,000 84,000 25 Evaporation Pond Liner SF 1,20 70,000 All Reqd 450,000 26 Evaporation Pond Liner LS 2,50,000 All Reqd 450,000 30 5								
18 Controls and Instrumentation Work LS 175,000 All Regid 40,000 19 Generators Stand Automatic Transfer LS 40,000 All Regid 40,000 North Weil Treatment Facility Subtotal \$ 3,215,000 Central Treatment Facility 20 Clearing and Grubbing Acre \$ 5,000 2 \$ 10,000 21 Site Work LS 220,000 All Regid 220,000 21 Site Work LS 220,000 All Regid 220,000 22 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Building SF 2,10 3,800 798,000 25 Evaporation Pond Liner SF 1,20 70,000 84,000 25 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 27 Backwash Settl		5						
Switch (ATS) North Well Treatment Facility Subtotal \$ 3,215,000 Central Treatment Facility Acre \$ 5,000 2 \$ 10,000 21 Sile Work LS 220,000 All Reqd 5,000 2 \$ 10,000 21 Sile Work LS 220,000 All Reqd 5,000 20 \$ 10,000 23 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Building SF 210 3,800 780,000 25 Evaporation Pond Excavation/ CY 60 2,100 84,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Excavation/ CY 60 41,000 42,630,000 27 Backwash Setting Tants LS 25,000 All Reqd 75,000 30 Element Fead Pumps and Equipment LS 57,000 All Reqdd 45,000								
North Well Treatment Facility Subtodal \$ 3,215,000 20 Clearing and Grubbing Acre \$ 5,000 2 \$ 10,000 21 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 22 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 22 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 23 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Building SF 2,10 126,000 84,000 25 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Liner LS 2,630,000 41 Reqid 2,630,000 26 Evaporation Pond Liner LS 2,630,000 41 Reqid 2,630,000 27 Backwash Setting Tanks LS 2,630,000 41 Reqid 75,000 28 Beckroanis Acting ment LS 15,50,000 41 Reqid 45,000 <td>19</td> <td></td> <td>LS</td> <td>40,000</td> <td>All Req'd</td> <td></td> <td>40,000</td>	19		LS	40,000	All Req'd		40,000	
20 Clearing and Grubbing Acre \$ 5,000 2 \$ 10,000 21 Site Work LS 220,000 All Req'd 220,000 22 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 23 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Building SF 210 3,800 798,000 25 Evaporation Pond Excavation/ CY 60 2,100 126,000 26 Evaporation Pond Excavation/ CY 60 2,100 84,000 26 Evaporation Work LS 250,000 All Req'd 260,000 27 Backwash Settling Tanks LS 250,000 All Req'd 260,000 28 Mechanical Work LS 500,000 All Req'd 450,000 30 Electrical Work LS 50,000 All Req'd 450,000 31 HVAC LS 75,000 All Req'd 45,000 32 Sodum Hypochiorite System LS 75,000 All Req'd <td< td=""><td></td><td></td><td>North \</td><td>Vell Treatment F</td><td>acility Subtotal</td><td>\$</td><td>3,215,000</td></td<>			North \	Vell Treatment F	acility Subtotal	\$	3,215,000	
21 Site Work LS 220,000 All Reg'd 520,000 22 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 23 Raw Water/Finished Water Pipelines SY 50 2,700 136,000 24 Operating/Mechanical Building SF 210 3,800 798,000 25 Evaporation Pond Liver SF 1,20 70,000 84,000 26 Evaporation Pond Liver SF 1,20 70,000 84,000 26 Evaporation Pond Liver SF 1,20 70,000 84,000 27 Backwash Setting Tanks LS 2,630,000 All Reg'd 2,630,000 28 Treatment Equipment LS 450,000 All Reg'd 75,000 30 Electrical Work LS 350,000 All Reg'd 75,000 31 HVAC LS 350,000 All Reg'd 75,000 31 Pitabashing LS 350,000 All Reg'd 75,000			Acro	\$ 5,000	0	¢	10.000	
22 Raw Water/Finished Water Pipelines LF 140 4,000 560,000 23 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Bullding SF 2,10 3,800 798,000 25 Evaporation Pond Excavation/ CY 60 2,100 84,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 27 Backwash Settling Tanks LS 2,630,000 All Req'd 2,630,000 28 Mechanical Work LS 500,000 All Req'd 500,000 30 Electrical Work LS 500,000 All Req'd 50,000 31 Humbing LS 175,000 All Req'd 450,000 32 Sodium Hypochlorite System LS 300,000 All Req'd 300,000 35 Controls and Instrumentation Work LS 300,000 Ina		5 5				φ		
23 Raw Water/Finished Water Pipelines SY 50 2,700 135,000 24 Operating/Mechanical Building SF 210 3,800 798,000 25 Evaporation Pond Excavation/ CY 60 2,100 126,000 26 Evaporation Pond Liner SF 1,20 70,000 84,000 26 Evaporation Pond Liner SF 1,22 70,000 84,000 27 Backwash Settling Tanks LS 2,630,000 All Req'd 2,530,000 28 Treatment Equipment LS 45,000 All Req'd 500,000 30 Electrical Work LS 15,500 All Req'd 45,000 31 HVAC LS 15,000 All Req'd 50,000 31 Plumbing LS 15,000 All Req'd 50,000 32 Sodium Hypochlorite System LS 50,000 All Req'd 50,000 34 Chemical Feed Pumps and Equipment LS 50,000 1,732,000 1,								
24 Operating/Mechanical Building SF 210 3.800 798,000 25 Evaporation Pond Excavation/ CY 60 2,100 126,000 26 Evaporation Pond Liner SF 1.20 70,000 84,000 26 Evaporation Pond Liner SF 1.20 70,000 84,000 27 Backwash Settling Tanks LS 2630,000 All Req'd 250,000 28 Treatment Equipment LS 450,000 All Req'd 450,000 30 Electrical Work LS 450,000 All Req'd 75,000 31 HVAC LS 75,000 All Req'd 50,000 31 HVAC LS 300,000 All Req'd 50,000 32 Sodium Hypochlorits System LS 300,000 All Req'd 50,000 33 Plumbing LS 15,000 All Req'd 50,000 34 Chemical Feed Pumps and Equipment LS 300,000 Ecotricio \$ 11,548,000 <		Raw Water/Finished Water Pipelines						
Embankment 26 Evaporation Pond Liner SF 1.20 70,000 84,000 27 Backwash Settling Tanks LS 250,000 All Reqtd 2,650,000 28 Treatment Equipment LS 2,630,000 All Reqtd 2,650,000 29 Mechanical Work LS 500,000 All Reqtd 450,000 30 Electrical Work LS 57,000 All Reqtd 50,000 31 HVAC LS 75,000 All Reqtd 175,000 32 Sodium Hypochlorite System LS 175,000 All Reqtd 450,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Reqtd 300,000 36 Generator Set and ATS LS 75,000 All Reqtd 300,000 36 Generator Set and ATS LS 75,000 All Reqtd 300,000 37 TOTAL ESTIMATED CONSTRUCTION COST \$ 11,548,000 1,732,000 \$ 11,548,000 17,32,000 Supples, Parts, Maintenance, and Repairs 50,000 \$ 350,000 \$ 13,300,000 2 Utilities	24		SF	210	3,800		798,000	
26 Evaporation Pond Liner SF 1.20 70,000 84,000 27 Backwash Settiing Tanks LS 250,000 All Reqd 250,000 28 Treatment Equipment LS 2630,000 All Reqd 2633,000 29 Mechanical Work LS 450,000 All Reqd 450,000 30 Electrical Work LS 500,000 All Reqd 75,000 31 HVAC LS 175,000 All Reqd 75,000 32 Sodium Hypochorite System LS 175,000 All Reqd 75,000 32 Sodium Hypochorite System LS 175,000 All Reqd 75,000 33 Plumbing LS 45,000 All Reqd 75,000 34 Chernical Feed Pumps and Equipment LS 300,000 All Reqd 75,000 36 Generator Set and ATS LS 75,000 All Reqd 75,000 35 Controls and Instrumentation Work LS 300,000 Integd 75,000 Total DMER Electrinal Work LS 50,000 </td <td>25</td> <td>•</td> <td>CY</td> <td>60</td> <td>2,100</td> <td></td> <td>126,000</td>	25	•	CY	60	2,100		126,000	
27 Backwash Settling Tanks LS 250,000 All Req'd 250,000 28 Treatment Equipment LS 2,630,000 All Req'd 2,630,000 30 Electrical Work LS 450,000 All Req'd 500,000 31 HVAC LS 500,000 All Req'd 75,000 32 Sodium Hypochlorite System LS 175,000 All Req'd 45,000 33 Plumbing LS 45,000 All Req'd 45,000 34 Chemical Feed Pumps and Equipment LS 30,000 All Req'd 50,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 35 Controls and Instrumentation Work LS 30,000 All Req'd 75,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Central Treatment Facility Subtotal \$ \$ 35,000 1,732,000 <t< td=""><td>26</td><td></td><td>SF</td><td>1.20</td><td>70,000</td><td></td><td>84,000</td></t<>	26		SF	1.20	70,000		84,000	
29 Mechanical Work LS 450,000 All Req'd 450,000 30 Electrical Work LS 500,000 All Req'd 500,000 31 HVAC LS 75,000 All Req'd 175,000 32 Sodium Hypochlorite System LS 175,000 All Req'd 450,000 33 Plumbing LS 45,000 All Req'd 450,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 50,000 35 Controls and Instrumentation Work LS 300,000 All Req'd 75,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtolal \$ 6,483,000 1,732,000 1,732,000 1,732,000 Total Construction Cost \$ 11,849,000 1 Labor (including Benefits) \$ 350,000 150,000 1 Labor (including Benefits) \$ 350,000		-						
30 Electrical Work LS 500,000 All Red'd 500,000 31 HVAC LS 75,000 All Red'd 75,000 32 Sodium Hypochlorite System LS 175,000 All Red'd 175,000 33 Plumbing LS 45,000 All Red'd 50,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Red'd 50,000 36 Generator Set and ATS LS 75,000 All Red'd 75,000 36 Generator Set and ATS LS 75,000 All Red'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Construction Contingency (15%) \$ 13,300,000 1,732,000 \$ 173,000 Total ESTIMATED CONSTRUCTION COST \$ 13,300,000 2 Vultities \$ 50,000 1,732,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 150,000 3 Supplies, Parts, Maintenance, and Repairs	28		LS	2,630,000	All Req'd		2,630,000	
31 HVAC LS 75,000 All Req'd 75,000 32 Sodium Hypochlorite System LS 175,000 All Req'd 175,000 33 Plumbing LS 45,000 All Req'd 175,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 300,000 35 Controls and Instrumentation Work LS 300,000 All Req'd 75,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Construction Contingency (15%) Total ESTIMATED CONSTRUCTION COST \$ 13,300,000 Annual Cost Memode Construction Contingency (15%) 1 Labor (including Benefits) \$ 350,000 2 Utilities 10,219,000 3 Supplies, Parts, Maintenance, and Repairs 50,000 3 Supplies, Parts, Maintenance, and Repairs 35,000 4 Reelacement 204,000 10,219,000<	29	Mechanical Work	LS	450,000	All Req'd		450,000	
32 Sodium Hypochlorite System LS 175,000 All Req'd 175,000 33 Pilumbing LS 45,000 All Req'd 45,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 300,000 36 Controls and Instrumentation Work LS 30,000 All Req'd 75,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Controls Construction Contingency (15%) 1,732,000 TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) 1 Labor (including Benefits) \$ 35,000 150,000 2 Utilities \$ 350,000 150,000 150,000 3 Supplies, Parts, Maintenance, and Repairs \$ 00,000 102,000 102,000 2 Chemicals \$ 35,000 \$ 020,000 102,000 102,000 102,000 2 Chemicals \$ 35,000 \$								
33 Plumbing LS 45,000 All Req'd 50,000 34 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 50,000 35 Controls and Instrumentation Work LS 300,000 All Req'd 300,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Controls and Instrumentation Work LS 75,000 All Req'd 75,000 Subtotal Estimated Construction Cost \$ 11,548,000 Controls and NUAL OPERATION MAINTENANCE, AND REPLACEMENT (OM&R) 1 Labor (including Benefits) \$ 350,000 150,000 2 Utilities \$ 350,000 150,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 35,000 2 Capital Outlay \$ 0,000 35,000 10,219,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 10,219,000 \$ 23,500,000 3 Chemicals \$ 0,204,000 \$								
34 Chemical Feed Pumps and Equipment LS 50,000 All Req'd 50,000 35 Controls and Instrumentation Work LS 300,000 All Req'd 300,000 36 Generator Set and ATS LS 75,000 All Req'd 300,000 36 Generator Set and ATS LS 75,000 All Req'd 300,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost \$ 11,548,000 Construction Contingency (15%) TOTAL ESTIMATED CONSTRUCTION COST \$ 11,548,000 Annual Cost Annual Cost Month ANALYSIS (2022 DOLLARS) Item Description Annual Cost Controls \$ 350,000 Supplies, Parts, Maintenance, and Repairs \$ 0,000 Cotal OM&R \$ 820,000		,, , , , , , , , , , , , , , , , , , ,						
35 Controls and Instrumentation Work LS 300,000 All Req'd 300,000 36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost Construction Contingency (15%) \$ 11,548,000 TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) Annual Cost DEDITIONAL ANNUAL OPERATION MAINTENANCE, AND REPLACEMENT (OM&R) 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 350,000 3 Supplies, Parts, Maintenance, and Repairs \$ 50,000 4 Capital Outlay \$ 300,000 5 Chemicals \$ 02,000 Total OM&R Replacement Total OM&R Replacement \$ 820,000 Total OM&R South OM&R Cost (5%, 20 years) Total OM&R South OM Total OM&R Replacement Total OM&R South OM Total OM&R Replacement Total Present Worth OM&R Cost (5%, 20 years)		-						
36 Generator Set and ATS LS 75,000 All Req'd 75,000 Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost Construction Contingency (15%) \$ 11,548,000 TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) Annual Cost MORTH ANALYSIS (2022 DOLLARS) Item Description Annual Cost MORTH ANALYSIS (2022 DOLLARS) 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 350,000 3 Supplies, Parts, Maintenance, and Repairs \$ 350,000 4 Capital Outlay \$ 35,000 5 Chemicals \$ 35,000 6 Replacement Total OM&R Total OM&R Total OM&R Total OM&R Total OM&R Cohemicals Total OM&R Total OM&R Total OM&R Total OM&R								
Central Treatment Facility Subtotal \$ 6,483,000 Subtotal Estimated Construction Cost Construction Contingency (15%) \$ 11,548,000 TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) \$ 13,300,000 Item Description \$ 13,300,000 ADDITIONAL ANNUAL OPERATION, MAINTENANCE, AND REPLACEMENT (OM&R) \$ 350,000 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 350,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 4 Capital Outlay \$ 0,000 5 Chemicals \$ 0,000 6 Replacement \$ 204,000 Yessent Worth OM&R Cost (5%, 20 years) \$ 10,219,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000 10.219,000 \$ 23,500,000								
Subtotal Estimated Construction Cost Construction Contingency (15%) \$ 11,548,000 1,732,000 TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) Item Description Annual Cost ADDITIONAL ANNUAL OPERATION, MAINTENANCE, AND REPLACEMENT (OM&R) \$ 350,000 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 350,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 4 Capital Outlay \$ 0,000 5 Chemicals \$ 0,000 6 Replacement \$ 204,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 \$ 23,500,000 10,219,000 <t< td=""><td></td><td></td><td>Cer</td><td></td><td></td><td>s</td><td></td></t<>			Cer			s		
TOTAL ESTIMATED CONSTRUCTION COST \$ 13,300,000 PRESENT WORTH ANALYSIS (2022 DOLLARS) Annual Cost Colspital Outlay Colspan=								
PRESENT WORTH ANALYSIS (2022 DOLLARS) Item Description Annual Cost ADDITIONAL ANNUAL OPERATION, MAINTENANCE, AND REPLACEMENT (OM&R) \$ 350,000 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 0,000 3 Supplies, Parts, Maintenance, and Repairs \$ 50,000 4 Capital Outlay \$ 30,000 5 Chemicals \$ 30,000 6 Replacement \$ 204,000 Total OM&R Present Worth OM&R Cost (5%, 20 years) \$ 820,000 10,219,000 \$ 23,500,000 Total Present Worth (2022 Dollars) TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION ALTERNATIVE A -								
Item Description Annual Cost ADDITIONAL ANNUAL OPERATION, MAINTENANCE, AND REPLACEMENT (OM&R) \$ 350,000 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 150,000 3 Supplies, Parts, Maintenance, and Repairs \$ 0,000 4 Capital Outlay \$ 30,000 5 Chemicals \$ 350,000 6 Replacement \$ 204,000 Total OM&R Present Worth OM&R Cost (5%, 20 years) 10,219,000 \$ 23,500,000 * \$ 23,500,000		τοτλ	AL ESTI	MATED CONSTR	RUCTION COST	\$	13,300,000	
ADDITIONAL ANNUAL OPERATION, MAINTENANCE, AND REPLACEMENT (OM&R) 1 Labor (including Benefits) \$ 350,000 2 Utilities \$ 150,000 3 Supplies, Parts, Maintenance, and Repairs \$ 50,000 4 Capital Outlay \$ 50,000 5 Chemicals 35,000 6 Replacement Total OM&R Replacement Total OM&R Total Present Worth (2022 Dollars) Total Present Worth (2022 Dollars) Total Present Worth (2022 Dollars) Sonoon <td co<="" td=""><td></td><td></td><td><u>8)</u></td><td></td><td></td><td></td><td>Annual Cost</td></td>	<td></td> <td></td> <td><u>8)</u></td> <td></td> <td></td> <td></td> <td>Annual Cost</td>			<u>8)</u>				Annual Cost
2 Utilities 3 Supplies, Parts, Maintenance, and Repairs 3 Capital Outlay 3 Chemicals Chemicals Ceplacement Total OM&R Present Worth OM&R Cost (5%, 20 years) Total Present Worth (2022 Dollars) \$ 23,500,000 \$ 23,500,000 TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION		-	ANCE. A	ND REPLACEME	ENT (OM&R)			
 Supplies, Parts, Maintenance, and Repairs Capital Outlay Chemicals Replacement Total OM&R Present Worth OM&R Cost (5%, 20 years) Total Present Worth (2022 Dollars) 23,500,000 TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION						\$		
 4 Capital Outlay 5 Chemicals 6 Replacement Total OM&R Present Worth OM&R Cost (5%, 20 years) 7 Total OM&R (5%, 20 years) 8 820,000 10,219,000 2 3,500,000 2 3,500,000 2 3,500,000 								
5 Chemicals 6 Replacement 5 Chemicals 6 Replacement 5 Chemicals 6 Replacement 5 Chemicals 5 Chemicals 5 Chemicals 5 Chemicals 5 35,000 204,000 5 820,000 10,219,000 5 23,500,000 5 20,000 5 20,000			S					
6 Replacement 204,000 Total OM&R Present Worth OM&R Cost (5%, 20 years) Total OM&R Total Present Worth (2022 Dollars) TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION								
Total OM&R Present Worth OM&R Cost (5%, 20 years) Total Present Worth (2022 Dollars) TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION								
TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION	0	·			Tatel Correct	_		
TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION			Drecent \			\$		
TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION		·				_		
LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION			Tot	ai Present Worth	n (2022 Dollars)	\$	23,500,000	
erson WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION	$\overline{}$	Т	OWN	OF			$\overline{}$	
WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEMBRANE FILTRATION OPTION					J		V	
ALTERNATIVE A - MEMBRANE FILTRATION OPTION							T	
Ates, inc. ALTERNATIVE A - MEMBRANE FILTRATION OPTION	erson	WATER SYSTE	EM IN	1PROVEM	ENTS			
MEMBRANE FILTRATION OPTION	V	AI TER	NA1	ΓIVF A -				
	ates, inc.							
PRELIMINARY COST ESTIMATE			LIR	ATION (UPTION		λ	
			r					

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE A - MEDIA FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

NO.	DESCRIPTION	UNIT	UN	IT PRICE	ESTIMATED QUANTITY	т	TOTAL PRICE	
Gene	ral							
1	Mobilization/Demobilization	LS	\$	555,000	All Req'd	\$	555,000	
2	Project Safety, Temporary Traffic Control,	LS		75,000	All Req'd		75,000	
2	and Quality Control	EA		75,000	3		225,000	
3 4	Rehabilitation of Existing Wells Improvements to Existing Well Pump	EA		200,000	5		1,000,000	
4	Station	LA		200,000	5		1,000,000	
				Ge	eneral Subtotal	\$	1,855,000	
North 5	Nell Treatment Facility Clearing and Grubbing	Acre	\$	F 000	2	\$	10,000	
5 6	Site Work	LS	φ	5,000 80,000	∠ All Req'd	φ	10,000 80,000	
7	Operating/Mechanical Building	SF		210	3,000		630,000	
8	Evaporation Pond Excavation/	CY		60	1,650		99,000	
Ū	Embankment	01		00	1,000		00,000	
9	Evaporation Pond Liner	SF		1.20	50,000		60,000	
10	Backwash Settling Tanks	LS		200,000	All Req'd		200,000	
11	Treatment Equipment	LS		650,000	All Req'd		650,000	
12	Mechanical Work	LS		200,000	All Req'd		200,000	
13	Electrical Work	LS		200,000	All Req'd		200,000	
14	Heating, Ventilation, and Air Conditioning (HVAC)	LS		50,000	All Req'd		50,000	
15	Sodium Hypochlorite System	LS		100,000	All Reg'd		100,000	
16	Plumbing	LS		30,000	All Reg'd		30,000	
17	Chemical Feed Pumps and Equipment	LS		50,000	All Req'd		50,000	
18	Controls and Instrumentation Work	LS		175,000	All Req'd		175,000	
19	Generator Set and Automatic Transfer Switch (ATS)	LS		40,000	All Req'd		40,000	
		North V	Vell T	reatment Fa	acility Subtotal	\$	2,574,000	
	ral Treatment Facility		¢		-			
20	Clearing and Grubbing	Acre	\$	5,000	3	\$	15,000	
21 22	Site Work	LS LF		220,000 140	All Req'd 4,000		220,000 560,000	
22	Raw Water/Finished Water Pipelines Raw Water/Finished Water Pipelines	SY		50	2,700		135,000	
	Surface Restoration							
24	Operating/Mechanical Building	SF		210	5,100		1,071,000	
25	Evaporation Pond Excavation/ Embankment	CY		60	2,450		147,000	
26	Evaporation Pond Liner	SF		1.20	90,000		108,000	
27	Backwash Settling Tanks	LS		1,000,000	All Req'd		1,000,000	
28	Treatment Equipment	LS		2,310,000	All Req'd		2,310,000	
29	Mechanical Work	LS		450,000	All Req'd		450,000	
30	Electrical Work	LS		500,000	All Req'd		500,000	
31	HVAC	LS		75,000	All Req'd		75,000	
32	Sodium Hypochlorite System	LS		175,000	All Req'd		175,000	
33	Plumbing	LS		45,000	All Req'd		45,000	
34	Chemical Feed Pumps and Equipment	LS		30,000	All Req'd		30,000	
35	Controls and Instrumentation Work	LS		300,000	All Req'd		300,000	
36	Generator Set and ATS	LS		75,000	All Req'd		75,000	
		Cen	itral T	reatment Fa	acility Subtotal	\$	7,216,000	
		Subtot			struction Cost	\$		
					ntingency (15%)	_	1,747,000	
			WATE	CONSTR	UCTION COST	\$	13,400,000	
ltem	SENT WORTH ANALYSIS (2022 DOLLARS Description						Annual Cost	
	TIONAL ANNUAL OPERATION, MAINTENA	NCE, A	ND R	EPLACEME	<u>:NT (UM&R)</u>	¢	200.000	
1 2	Labor (including Benefits) Utilities					\$	300,000 120,000	
2	Supplies, Parts, Maintenance, and Repairs	3					60,000	
4	Capital Outlay	,					30,000	
5	Chemicals						12,000	
6	Filter Media Replacement						10,000	
7	Replacement						148,000	
•	,				T-4 - 0	-		
	-)roo! '	Ma-44		Total OM&R	\$	680,000	
	F				t (5%, 20 years)	<u> </u>	8,475,000	
		Tot	al Pre	esent Worth	n (2022 Dollars)	\$	21,900,000	
							$\overline{}$	
	ТС	DWN	UI.					
$\overline{\mathbf{A}}$				FGON	J		V	
Y	LAKEVIE	W, 0	ЭR				Υ	
n	LAKEVIE WATER TREATM	EW, (ENT	OR IMF	PROVE			Y	
	LAKEVIE WATER TREATM	EW, (ENT	OR IMF	PROVE			Ŷ	
n	LAKEVIE WATER TREATM ALTER	ENT NA	OR IMF FIV	PROVE	MENTS		Ŷ	
	LAKEVIE WATER TREATM	ENT NA	OR IMF FIV	PROVE	MENTS		Ĭ	

Sic

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE B - MEMBRANE FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

NO.	DESCRIPTION	UNIT	U	NIT PRICE	ESTIMATED QUANTITY	T	OTAL PRICE
Gene	ral						
1	Mobilization/Demobilization	LS	\$	546,000	All Req'd	\$	546,000
2	Project Safety, Temporary Traffic Control,	LS		200,000	All Req'd		200,000
	and Quality Control						
3	Rehabilitation of Existing Wells	EA		75,000	3		225,000
4	Improvements to Existing Well Pump	EA		200,000	5		1,000,000
	Station						
				G	eneral Subtotal	\$	1,971,000
North	Well Transmission Line						
5	Well Pump Upgrades	LS	\$	90,000	All Req'd	\$	90,000
6	Controls and Instrumentation Work	LS		50,000	All Req'd		50,000
7	New 8-inch Transmission Line	LF		110	14,500		1,595,000
8	Surface Restoration	SY		50	4,750		237,500
9	8-inch Gate Valve	Each		1,800	14		25,200
	1	North W	Vell T	ransmissio	n Line Subtotal	\$	1,998,000
Centr	al Treatment Facility						
10	Clearing and Grubbing	Acre	\$	5,000	3	\$	15,000
11	Site Work	LS	Ψ	220,000	All Req'd	Ψ	220,000
12	Raw Water/Finished Water Pipelines	LF		140	4,000		560,000
12	Raw Water/Finished Water Pipelines	SY		50	2,700		135,000
10	Surface Restoration	51		50	2,100		100,000
14	Operating/Mechanical Building	SF		210	4,000		840,000
15	Evaporation Pond Excavation/	CY		60	2,400		144,000
	Embankment				_,		.,
16	Evaporation Pond Liner	SF		1.20	90,000		108,000
17	Backwash Settling Tanks	LS		300,000	All Req'd		300,000
18	Treatment Equipment	LS		3,255,000	All Req'd		3,255,000
19	Mechanical Work	LS		500,000	All Req'd		500,000
20	Electrical Work	LS		600,000	All Req'd		600,000
21	Heating, Ventilation, and Air	LS		80,000	All Req'd		80,000
	Conditioning						
22	Sodium Hypochlorite System	LS		200,000	All Req'd		200,000
23	Plumbing	LS		50,000	All Req'd		50,000
24	Chemical Feed Pumps and Equipment	LS		100,000	All Req'd		100,000
25	Controls and Instrumentation Work	LS		300,000	All Req'd		300,000
26	Generator Set and Automatic Transfer Switch	LS		85,000	All Req'd		85,000
		Cen	ntral 1	Freatment F	acility Subtotal	\$	7,492,000
					struction Cost	\$	11,461,000
		oubtot			ntingency (15%)	Ψ	1,719,000
	τοτρ		маті	ED CONSTR	UCTION COST	\$	13,200,000
	SENT WORTH ANALYSIS (2022 DOLLARS						
Item	Description	1					Annual Cost
	TIONAL ANNUAL OPERATION, MAINTENA	NCE, A	ND F	REPLACEME	NT (OM&R)		
1	Labor (including Benefits)					\$	175,000
2	Utilities						100,000
3	Supplies, Parts, Maintenance, and Repairs						25,000
4	Capital Outlay						20,000
5	Chemicals						60,000
6	Replacement						162,750
					Total OM&R	\$	540,000
	F	resent \	Worth	OM&R Cos	t (5%, 20 years)	Ŧ	6,730,000
						. <u> </u>	
		Tot	tal Pr	esent Worth	n (2022 Dollars)	\$	19,900,000
	тс) WN	OF				
	V LAKEVIE	W (DR	FGON			V
sor	N WATER TREATM						
					ENIS		
SOP	WATER TREATM	NAT	٦V	E B -			
		NAT	٦V	E B -			

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE B - MEDIA FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

NO.	DESCRIPTION	UNIT	U	NIT PRICE	ESTIMATED QUANTITY	т	OTAL PRIC
Gener	al						
1	Mobilization/Demobilization	LS	\$	582,000	All Req'd	\$	582,000
2	Project Safety, Temporary Traffic Control,	LS		200,000	All Req'd		200,00
3	Rehabilitation of Existing Wells	EA		75,000	3		225,00
4	Improvements to Existing Well Pump Station	EA		200,000	5		1,000,00
				G	eneral Subtotal	\$	2,007,000
North	Well Transmission Line						
5	Well Pump Upgrades	LS	\$	90,000	All Req'd	\$	90,000
6	Controls and Instrumentation Work	LS		50,000	All Req'd		50,000
7	New 8-inch Transmission Line	LF		110	14,500		1,595,000
8	Surface Restoration	SY		50	4,750		237,500
9	8-inch Gate Valve	Each		1,800	14		25,20
		North W	/ell 1	Fransmissio	n Line Subtotal		1,998,000
	al Treatment Facility		•			•	~~~~~
10	Clearing and Grubbing	Acre	\$	5,000	4	\$	20,000
11	Site Work	LS		220,000	All Req'd		220,000
12	Raw Water/Finished Water Pipelines	LF		140	4,000		560,000
13	Raw Water/Finished Water Pipelines Surface Restoration	SY		50	2,700		135,000
14	Operating/Mechanical Building	SF		210	5,400		1,134,000
15	Evaporation Pond Excavation/	CY		60	3,700		222,000
	Embankment	~ '			5,700		,000
16	Evaporation Pond Liner	SF		1.20	155,000		186,000
17	Backwash Settling Tanks	LS		1,400,000	All Req'd		1,400,000
18	Treatment Equipment	LS		2,450,000	All Req'd		2,450,000
19	Mechanical Work	LS		500,000	All Req'd		500,000
20	Electrical Work	LS		600,000	All Req'd		600,000
21	Heating, Ventilation, and Air Conditioning	LS		80,000	All Req'd		80,000
22	Sodium Hypochlorite System	LS		200,000	All Req'd		200,000
23	Plumbing	LS		50,000	, All Req'd		50,000
24	Chemical Feed Pumps and Equipment	LS		80,000	All Reg'd		80,000
25	Controls and Instrumentation Work	LS		300,000	All Req'd		300,000
26	Generator Set and Automatic Transfer Switch	LS		85,000	All Req'd		85,000
	Gwitch	Cer	tral	Treatment F	acility Subtotal	\$	8,222,000
		Cubic	-1		-	•	
		Subtota			nstruction Cost ntingency (15%)	\$	12,227,000 1,834,000
	тот	AL ESTI	мат		RUCTION COST	\$	14,100,000
DDES	ENT WORTH ANALYSIS (2022 DOLLARS	2)					
Item	Description						Annual Cos
-	TIONAL ANNUAL OPERATION, MAINTEN	<u>ANCE, A</u>	ND F	REPLACEME	<u>ENT (OM&R)</u>		
1	Labor (including Benefits)					\$	155,000
2	Utilities						80,000
3	Supplies, Parts, Maintenance, and Repair	S					30,000
4	Capital Outlay						20,000
5	Chemicals						35,000
6	Filter Media Replacement						10,000
7	Equipment Replacement						122,500
			A /		Total OM&R	\$	450,000
					t (5%, 20 years)	<u>*</u>	5,608,000
		lot	al Pr	resent Worth	n (2022 Dollars)	\$	19,700,000
_	Т	OWN	OF			\	7
							/
		⊏w α)R				
re c	LAKEVI				ENTS		
erso	LAKEVI	MENT	IMF	PROVEM	ENTS		l l
erso Ites, in	n UAKEVI	MENT	IMF	PROVEM	ENTS		
/	n UAKEVI	MENT RNAT	imf TV	PROVEM			

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE C - MEMBRANE FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

NO.	DESCRIPTION	UNIT	U	NIT PRICE	ESTIMATED QUANTITY	тс	OTAL PRICE
Gene	ral						
1	Mobilization/Demobilization	LS	\$	429,000	All Req'd	\$	429,000
2	Project Safety, Temporary Traffic Control, and Quality Control	LS		75,000	All Req'd		75,000
3	Rehabilitation of Existing Wells	EA		75,000	3		225,000
4	Improvements to Existing Well Pump Station	EA		200,000	4		800,000
				G	eneral Subtotal	\$	1,529,000
Centr	al Treatment Facility						
5	Clearing and Grubbing	Acre	\$	5,000	3	\$	15,000
6	Site Work	LS		220,000	All Req'd		220,000
7	Raw Water/Finished Water Pipelines	LF		140	4,000		560,000
8	Raw Water/Finished Water Pipelines Surface Restoration	SY		50	2,700		135,000
9	Operating/Mechanical Building	SF		210	4,000		840,000
10	Evaporation Pond Excavation/ Embankment	CY		60	2,400		144,000
11	Evaporation Pond Liner	SF		1.20	90,000		108,000
12 13	Backwash Settling Tanks	LS LS		325,000 3 260 000	All Req'd		325,000
13	Treatment Equipment Mechanical Work	LS		3,260,000 500,000	All Req'd All Req'd		3,260,000 500,000
15	Electrical Work	LS		600,000	All Reg'd		600,000
16	Heating, Ventilation, and Air Conditioning	LS		80,000	All Req'd		80,000
17	Sodium Hypochlorite System	LS		200,000	All Req'd		200,000
18	Plumbing	LS		50,000	All Req'd		50,000
19	Chemical Feed Pumps and Equipment	LS		50,000	All Req'd		50,000
20	Controls and Instrumentation Work	LS		300,000	All Req'd		300,000
21	Generator Set and Automatic Transfer Switch	LS		85,000	All Req'd		85,000
		Cen	itral	Treatment F	acility Subtotal	\$	7,472,000
		Subtot			nstruction Cost ntingency (15%)	\$	9,001,000 1,350,000
	тот	AL ESTI				\$	10,400,000
ltem	ENT WORTH ANALYSIS (2022 DOLLARS Description TIONAL ANNUAL OPERATION, MAINTEN		ND	REPLACEME	NT (OM&R)		Annual Cos
1	Labor (including Benefits)				<u>.</u>	\$	175,000
2	Utilities						100,000
3	Supplies, Parts, Maintenance, and Repair	s					25,000
	Capital Outlay						20,000
4							25,000
5	Chemicals						163,000
	Chemicals Replacement						100,000
5	Replacement	Present \	Nort	h OM&R Cos	Total OM&R t (5%, 20 years)	\$	510,000 6,356,000
5	Replacement					\$ \$	510,000
5	Replacement	Tot	al P		t (5%, 20 years)		510,000 6,356,000
5	Replacement	Tot OWN (al P	resent Worth	t (5%, 20 years)		510,000 6,356,000 16,800,000
5 6	Replacement	Tot OWN (EW, C	DF	resent Worth	t (5%, 20 years) a (2022 Dollars)		510,000 6,356,000
5 6	Replacement	Tot OWN (EW, C MENT	DF DRI	resent Worth EGON ROVEMEN	t (5%, 20 years) a (2022 Dollars)		510,000 6,356,000 16,800,000 FIGL
5 6	Replacement	Tot OWN (EW, C MENT RNAT	DF DRI IMP	EGON EGON ROVEMEN	t (5%, 20 years) a (2022 Dollars) NTS		510,000 6,356,000 16,800,000

J

TOWN OF LAKEVIEW, OREGON WATER SYSTEM IMPROVEMENTS ALTERNATIVE C - MEDIA FILTRATION OPTION PRELIMINARY COST ESTIMATE (YEAR 2022 COSTS)

NO.	DESCRIPTION	UNIT	U	NIT PRICE	ESTIMATED QUANTITY	тс	OTAL PRICE
Gene	ral						
1	Mobilization/Demobilization	LS	\$	464,000	All Req'd	\$	464,000
2	Project Safety, Temporary Traffic Control, and Quality Control	LS		75,000	All Req'd		75,000
3	Rehabilitation of Existing Wells	EA		75,000	3		225,000
4	Improvements to Existing Well Pump Station	EA		200,000	4		800,000
				G	eneral Subtotal	\$	1,564,000
Centr	al Treatment Facility						
5	Clearing and Grubbing	Acre	\$	5,000	4	\$	20,000
6	Site Work	LS	·	220,000	All Req'd		220,000
7	Raw Water/Finished Water Pipelines	LF		140	4,000		560,000
8	Raw Water/Finished Water Pipelines Surface Restoration	SY		50	2,700		135,000
9	Operating/Mechanical Building	SF		210	5,400		1,134,000
10	Evaporation Pond Excavation/ Embankment	CY		60	3,700		222,000
11	Evaporation Pond Liner	SF		1.20	155,000		186,000
12	Backwash Settling Tanks	LS		1,400,000	All Req'd		1,400,000
13	Treatment Equipment	LS		2,450,000	All Req'd		2,450,000
14	Mechanical Work	LS		500,000	All Req'd		500,000
15	Electrical Work	LS		600,000	All Req'd		600,000
16	Heating, Ventilation, and Air Conditioning	LS		80,000	All Req'd		80,000
17	Sodium Hypochlorite System	LS		200,000	All Req'd		200,000
18	Plumbing	LS		50,000	All Req'd		50,000
19	Chemical Feed Pumps and Equipment	LS		30,000	All Req'd		30,000
20	Controls and Instrumentation Work	LS		300,000	All Req'd		300,000
21	Generator Set and Automatic Transfer Switch	LS		85,000	All Req'd		85,000
		Cen	ntral	Treatment F	acility Subtotal	\$	8,172,000
		Subtot			nstruction Cost	\$	9,736,000 1,460,000
					ntingency (15%)		
	TOTA	AL ESTI	MAT	ED CONSTR	UCTION COST	\$	11,200,000
<u>PRES</u> Item	ENT WORTH ANALYSIS (2022 DOLLARS Description	<u>5)</u>					Annual Cost
	TIONAL ANNUAL OPERATION. MAINTENA	ANCE. A	ND I	REPLACEME	<u>NT (OM&R)</u>		
1	Labor (including Benefits)					\$	155,000
2	Utilities						80,000
3	Supplies, Parts, Maintenance, and Repairs	5					30,000
4	Capital Outlay						20,000
5	Chemicals						10,000
6	Filter Media Replacement						10,000
7	Equipment Replacement						122,500
					Total OM&R	\$	430,000
	F	Present \	Wort	h OM&R Cos	t (5%, 20 years)		5,359,000
		Tot	al Pi	resent Worth	n (2022 Dollars)	\$	16,600,000
	Т	OWN (JF				
				EGON		(
der		EW, C	DRE		NTS		FIGU
rrv	son LAKEVII	EW, C MENT) Re	ROVEME	NTS		
rrv	SON UAKEVII WATER TREATM	EW, C MENT RNAT	DRE IMP TVE	ROVEMEN E C -			FIGU 9
rrv	son LAKEVII	EW, C MENT RNAT	DRE IMP TVE	ROVEMEN E C -			

F

ATTACHMENT Water Quality Sampling, Testing, and Data Analysis (Task 1C) Technical Memorandum

engineering • surveying • natural resources

TECHNICAL MEMORANDUM

То:	Scott Langum, Town of Lakeview	
From:	Troy Baker, P.E.	
Subject:	Water Quality Sampling, Testing, and Data Analysis (Task 1C)	MERED PROFESO
Date:	July 15, 2022	GINE A 65318PE
Job/File No.	214-01-24.1 (w/encl.)	
cc:	Michele Parry, Town of Lakeview Dan Scalas, P.E., Adkins Engineering Amber Hudspeth, Hudspeth Land+Water (HLW) Jeremy Wenger, P.E., Fluent Engineering Tawni Bean, Business Oregon Larry Holzgang, Business Oregon Lucas Stangel, P.E., Anderson Perry & Associates, Inc. (AP) Bryce Wininger, P.E., AP Austin Byrer, AP	Digitally Signed OREGON AMA. 12, 2001 FOF L. BAN RENEWS 12-31-23

Introduction

The purpose of this technical memorandum is to summarize the results of the water quality testing and data analysis for the Town of Lakeview, Oregon's existing water sources. Water quality results provided to AP will help identify water treatment technologies suited for the Town's water quality and provide data to assist with selection of the most appropriate and cost-effective treatment process for the Town's water system improvements (WSI). Under the Professional Services Agreement dated March 9, 2022, the Town hired AP to complete engineering services related to the WSI including summarizing the results of the water samples collected from the Town's existing water sources. Water quality data have been summarized to better evaluate treatment technologies available for the Town. The water quality data summarized were obtained from the reported water quality sampling and testing data provided by independent laboratories. Constituents included in the water quality sampling and testing data are based on the 2018 Water System Master Plan (WSMP) and the Environmental Protection Agency's (EPA) primary and secondary drinking water standards.

The EPA outlines various constituents that can be found in municipal water systems. The EPA has two categories of constituents, primary and secondary drinking water standards, which set limits for each constituent. Primary drinking water standards are legally enforceable contaminant limits established to help protect the health and safety of municipal water system consumers. Secondary drinking water standards are non-enforceable contaminant limits considered to affect taste, odor, and cosmetic qualities of the water and are not necessarily related to protecting the health and safety of consumers.

Sound Solutions

Solid Engineering

Scott Langum July 15, 2022 Page -2-

Testing and Sampling Method

The reported water quality data were derived from water samples collected and packaged by HLW. The water samples were then sent by HLW to Brooks Applied Labs (BAL) and Edge Analytical to test for various water quality constituents. The samples provided to BAL and Edge Analytical were grab samples taken from each existing water source. Grab samples are a single sample collected in an individual container from a specific site to use for testing purposes. They represent an instantaneous sample of water quality constituents found in the associated water source the sample was taken from.

Testing methods performed by both laboratories are shown next to each constituent under the method column in the data reports included in the appendices. Testing methods performed by laboratories for drinking water samples use EPA-approved methods. The definition of each EPA-approved testing method is described on Table 1.

TESTING METHODS AND METHOD DESCRIPTIONS						
Testing Method	Method Description					
EPA Method 100.2	Determines the presence and quantifies the number of asbestos structures					
	longer than 10 micrometers in drinking water samples.					
EPA Method 200.8	Determines 21 elements shown as dissolved elements in drinking water					
	samples, with organometallic compounds determined as total metals.					
Method OIA-1677-DW	Determines the available cyanide in drinking water.					
EPA Method 300.0	Determines common inorganic anions in drinking water, and a secondary					
	part determines bromate, chlorate, and chlorite in drinking water.					
EPA Method 200.7	Determines 31 analytes in the dissolved fraction of aqueous samples and					
	total recoverable analytes in water.					
EPA Method 180.1	Determines the nephelometric turbidity units (NTUs) in drinking water.					
EPA Method 900.0	Determines the measurement of gross alpha and beta particle activities in					
	drinking water utilizing a screening technique.					
EPA Method 903.1	Determines the measurement of radium-226 in drinking water.					
EPA Method 904.0	Determines the beta activity from actinium-228 produced by decaying					
	radium-228; can be related to the radium-228 present in the sample.					
EPA Method 245.1	Determines the mercury in drinking water.					
EPA Method 548.1	Determines the endothall in drinking water.					
EPA Method 549.2	Determines the diquat and paraquat in drinking water.					
EPA Method 524.2	Determines the purgeable volatile organic compounds and some					
	disinfection byproducts in drinking water.					
IC-ICP-CRC-MS	Determines arsenic speciation in drinking water.					

TABLE 1 TESTING METHODS AND METHOD DESCRIPTIONS

BAL provided arsenic speciation testing for the North Well. This testing was analyzed on May 17, 2022, and the testing results were provided on May 19, 2022. The remaining constituents summarized on Table 2 were taken from each water source during two independent grab sample events and tested by Edge Analytical. Edge Analytical provided testing for the North Well; Wells No. 2, 6, 7, and 9; and the Spring Line. Testing results were provided by Edge Analytical on February 2, 2022, and May 27, 2022, for the first and second set of sampling events, respectively.

Scott Langum July 15, 2022 Page -3-

Water Quality Data

The following water quality data on Table 2 provide a summary of testing results associated with samples obtained from the Town's existing water sources and tested by BAL and Edge Analytical. The regulatory EPA limits for constituents are also provided on Table 2 for reference. Constituents included on the summarized table are a combination of primary and secondary drinking water standards established by the EPA as well as constituents of interest outlined in the WSMP and scope of work. Two of the Town's existing water sources were not included on Table 2; Well No. 8 and the Spring Line. Well No. 8 was not included, as the well is not currently producing water. The Spring Line was not included as it is not a consistent water source available for the Town year-round, and it is not the intent to treat water from the spring source through the new treatment facility.

Primary EPA Constituents	North	Well	Well	Well	Well	EPA			
	Well	No. 2	No. 6	No. 7	No. 9	Limits			
Arsenic, Total (mg/L)	0.0306	0.0025	0.0099	0.0076	0.0014	0.0100			
Arsenic (III) (mg/L)	0.0280	N/A	N/A	N/A	N/A				
Arsenic (V) (mg/L)	0.0023	N/A	N/A	N/A	N/A				
Copper (mg/L)	ND	0.0020	0.0052	0.0247	0.0246	1.3000			
Lead (mg/L)	0.0003	0.0008	0.0007	0.0010	0.0049	0.0150			
Mercury (mg/L)	ND	ND	ND	ND	ND	0.002			
Nitrate as Nitrogen (mg/L)	ND	ND	ND	ND	ND	10			
Total Coliform (CFU) (percent)	ND	ND	ND	ND	ND	5.0 ¹			
Turbidity (NTU)	8.40	3.60	1.20	0.70	2.20	1			
Uranium (mg/L)	ND	ND	0.0001	0.0001	0.0001	0.030			
Secondary EPA Constituents									
Alkalinity (mg CaCO₃/L)	58.8	225.0	108.0	109.0	161.0				
Aluminum (mg/L)	ND	0.652	0.231	0.060	2.760	0.050 to 0.200			
Color (Color Units)	ND	20.0	40.0	20.0	40.0	15.0			
Hardness (mg/L)	11.1	169.0	166.0	51.0	13.0				
Iron (mg/L)	0.462	1.620	1.490	0.420	3.200	0.300			
Manganese (mg/L)	0.0172	2.2200	2.6400	0.7960	0.1180	0.0500			
Nickel (mg/L)	0.0003	0.0010	0.0019	0.0005	0.0026				
Odor (ton)	2.00	1.00	1.06	ND	1.40	3.00			
pH (pH Units)	8.18	7.62	7.68	8.24	8.44	6.50 to 8.50			
Phosphorous, Total (mg/L)	0.0390	0.3210	0.5080	0.4810	0.4700				
Sodium (mg/L)	192.0	42.1	128.0	86.7	68.7	20.0			
Sulfate (mg/L)	239.0	15.0	85.0	74.4	ND	250.0			
TDS (mg/L)	650.0	258.0	583.0	340.0	260.0	500.0			
Total Inorganic Carbon (mg/L)	10.31	49.34	22.56	22.05	34.41				
Total Organic Carbon (mg/L)	0.20	0.99	1.01	0.87	1.60				
Zinc (mg/L)	ND	0.0171	ND	0.0069	0.0036	5			

TABLE 2 WATER QUALITY DATA

A blank EPA limit cell indicates a level is not currently established; however, the constituent is important in identifying appropriate treatment technologies. EPA limits for arsenic are only specified for total arsenic.

Scott Langum July 15, 2022 Page -4-

¹ No more than 5.0 percent of samples collected in a month may be total coliform positive. For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform positive per month.

CFU = colony-forming units mg CaCO₃/L = milligrams per liter as calcium carbonate mg/L = milligrams per liter N/A = not applicable ND = not detected NTU = nephelometric turbidity units TDS = Total Dissolved Solids

Conclusion

As shown on Table 2, the Town of Lakeview has water quality issues that need to be addressed to meet EPA limits and to provide aesthetically pleasing water for residents. Arsenic is the main constituent within the Town's water sources that has an EPA primary standard above the enforceable limit. High levels of aluminum, iron, manganese, and TDS all are EPA secondary standards identified as contaminants that may account for colored water and taste issues. Other constituents, such as pH or sulfate, may affect how treatment of the water is achieved, which will help determine the treatment technology required for the Town's needs. It is important to note that the water quality data analyzed were from a small sample set of water quality data; therefore, the higher constituent value between the two testing results was used. This allows for a conservative estimate when determining an appropriate treatment technology. The Water Treatment Facility Process and Technology Alternatives Analysis technical memorandum provided as Task 1D will outline additional information and analysis with respect to water quality, explore available treatment technologies, and outline the technology recommended for and selected by the Town. For additional sampled and tested constituents, refer to Appendix A for the BAL testing report, Appendix B for the Edge Analytical Report from February 2, 2022, and Appendix C for the Edge Analytical Report from May 27, 2022.

Enclosures

Appendix A - Brooks Applied Labs Testing Report Appendix B - Edge Analytical Testing Report - February 2, 2022 Appendix C - Edge Analytical Testing Report - May 27, 2022

TB/bh

https://andersonperry.sharepoint.com/sites/LakeviewOR/Projects/214-01 Water System Improvements/024-029 Preliminary Engineering/024 Report - Original/24.1 - Task 1C - Water Quality Memo/Water Quality Data Memo (1C).docx

APPENDIX A BROOKS APPLIED LABS TESTING REPORT

May 19, 2022

Hudspeth Land and Water, LLC ATTN: Amber L. Hudspeth 7485 SW Joshua Court Powell Butte, Oregon 97753 amber@hlworegon.com

RE: Project HUD-BD2201

Client Project: Drinking Water

Dear Amber L. Hudspeth,

On May 11, 2022, Brooks Applied Labs (BAL) received one (1) water sample. The sample was loggedin for the analyses of Arsenic Speciation (arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid [*MMAs*], dimethylarsinic acid [*DMAs*], and unknown arsenic species) according to the chain-of-custody form. All samples were received and stored according to BAL SOPs and EPA methodology.

The sample was field filtered by the client.

Arsenic Speciation Quantitation by IC-ICP-CRC-MS

Arsenic speciation was performed by ion chromatography inductively coupled plasma collision reaction cell mass spectrometry (IC-ICP-CRC-MS). Arsenic species are first chromatographically separated on an ion exchange column and then quantified using inductively coupled plasma collision reaction cell mass spectrometry (ICP-CRC-MS). For more information on this determinative technique, please visit the Interference Reduction Technology section on our website.

In instances where the native sample result and/or the associated duplicate (DUP) result were below the MDL the RPD was not calculated (N/C).

It should be noted that all Brooks Applied Labs, LLC methods, standard operating procedures, inventions, ideas, processes, improvements, designs, and techniques included or referred to therein, must be considered and treated as Proprietary Information, protected by the Washington State Trade Secret Act, RCW 19.108 et seq., and other laws. All Proprietary Information, written or implied, will not be distributed, copied, or altered in any fashion without prior written consent from Brooks Applied Labs, LLC. All Proprietary Information (including originals, copies, summaries, or other reproductions thereof) shall remain the property of Brooks Applied Labs, LLC at all times and must be returned upon demand. Furthermore, products presented in this document may be protected by Federal Patent laws and infringement will be subject to prosecution in accordance with Title 35 US Code 271.

The results were not method blank corrected, as described in the calculations section of the relevant BAL SOP(s), and were evaluated using reporting limits adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

All data was reported without further qualification and all other associated quality control sample results met the acceptance criteria.

BAL, an accredited laboratory, certifies that the reported results of all analyses for which BAL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page in your report. This report should be used in its entirety for interpretation of results.

Please feel free to contact us if you have any questions regarding this report.

Sincerely,

Amy foodalf

Amy Goodall Project Manager Brooks Applied Labs amy@brooksapplied.com

Laboratory Accreditation

BAL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BAL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at <<u>http://www.brooksapplied.com/resources/certificates-permits</u> or review Tables 1 and 2 in our Accreditation Information. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

AR	as received	MS	matrix spike
BAL	Brooks Applied Labs	MSD	matrix spike duplicate
BLK	method blank	ND	non-detect
BS	blank spike	NR	non-reportable
CAL	calibration standard	N/C	not calculated
ССВ	continuing calibration blank	PS	post preparation spike
CCV	continuing calibration verification	REC	percent recovery
COC	chain of custody record	RPD	relative percent difference
D	dissolved fraction	SCV	secondary calibration verification
DUP	duplicate	SOP	standard operating procedure
IBL	instrument blank	SRM	reference material
ICV	initial calibration verification	Т	total fraction
MDL	method detection limit	TR	total recoverable fraction
MRL	method reporting limit		

Definition of Data Qualifiers

(Effective 3/23/2020)

- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Please see narrative for explanation.
- J Detected by the instrument, the result is > the MDL but \leq the MRL. Result is reported and considered an estimate.
- J-1 Estimated value. A full explanation is presented in the narrative.
- M Duplicate precision (RPD) was not within acceptance criteria. Please see narrative for explanation.
- N Spike recovery was not within acceptance criteria. Please see narrative for explanation.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.
- **Z** Holding time and/or preservation requirements not established for this method; however, BAL recommendations for holding time were not followed. Please see narrative for explanation.

These qualifiers are based on those previously utilized by Brooks Applied Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic</u> <u>Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BAL.

Accreditation Information

Table 1. Accredited method/matrix/analytes for TNI

Issued by: State of Florida Dept. of Health (The NELAC Institute 2016 Standard)

Issued on: July 1, 2021; Valid to: June 30, 2022

Certificate Number: E87982-37

Method	Matrix	TNI Accredited Analyte(s)				
EPA 1638	Non-Potable Waters	Ag, Cd, Cu, Ni, Pb, Sb, Se, Tl, Zn				
EPA 200.8	Non-Potable Waters	Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, TI, U, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, U, V, Zn				
EPA 6020	Solids/Chemicals & Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, Zn				
	Non-Potable Waters	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn, Hardness				
BAL-5000	Solids/Chemicals	Ag, As, B, Be, Cd, Co, Cr, Cu, Pb, Mo, Ni, Sb, Se, Sn, Sr, Tl, V, Zn				
	Biological	Ag, Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, Zn				
EPA 1640	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn				
EPA 1631E	Non-Potable Waters, Solids/Chemicals & Biological	Total Mercury				
EPA 1630	Non-Potable Waters	Methyl Mercury				
BAL-3200	Solids/Chemicals & Biological	Methyl Mercury				
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs				
BAL-4201	Non-Potable Waters	Se(IV), Se(VI)				
BAL-4300	Non-Potable Waters Solid/Chemicals	Cr(VI)				
SM2340B	Non-Potable Waters	Hardness				

Accreditation Information

Table 2. Accredited method/matrix/analytes for ISO (1),

Non-Governmental TNI (2)

Issued by: ANAB

Issued on: September 21, 2021; Valid to: March 30, 2024

Method	Matrix	ISO and Non-Gov. TNI Accredited Analyte(s)				
EPA 1638 Mod EPA 200.8 Mod EPA 6020 Mod	Non-Potable Waters	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn				
BAL-5000	Solids/Chemicals & Biological	Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Tl, V, Zn Hg (Biological Only)				
EPA 1640 Mod	Non-Potable Waters	Cd, Cu, Pb, Ni, Zn Ag, As, Cr, Co, Se, Tl, V (ISO Only)				
EPA 1631E Mod BAL-3100	Non-Potable Waters, Solids/Chemicals & Biological/Food	Total Mercury				
EPA 1630 Mod BAL-3200	Non-Potable Waters, Solids/Chemicals Biological	Methyl Mercury				
EPA 1632A Mod	Non-Potable Waters	Inorganic Arsenic (ISO Only)				
BAL-3300 Biological/Food Solids/Chemicals		Inorganic Arsenic (ISO Only)				
AOAC 2015.01 Mod BAL-5000	Food	As, Cd, Hg, Pb				
BAL-4100	Non-Potable Waters	As(III), As(V), DMAs, MMAs				
BAL-4100	Biological by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)				
BAL-4101	Food by BAL-4117	Inorganic Arsenic, DMAs, MMAs (ISO Only)				
BAL-4201	Non-Potable Waters	Se(IV), Se(VI), SeCN, SeMet				
BAL-4300	Non-Potable Waters, Solid/Chemicals	Cr(VI)				
SM 3500-Fe BAL-4500	Non-Potable Waters	Fe, Fe(II) (ISO Only)				
SM2340B	Non-Potable Waters	Hardness				
SM 2540G BAL-0501	Solids/Chemicals & Biological	% Dry Weight				

BAL Report 2205123 Client PM: Amber L. Hudspeth Client Project: Drinking Water

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
No Well	2205123-01	Water	Sample	05/09/2022	05/11/2022

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
As(III)	Water	SOP BAL-4100	05/16/2022	05/17/2022	B220995	S220545
As(V)	Water	SOP BAL-4100	05/16/2022	05/17/2022	B220995	S220545
DMAs	Water	SOP BAL-4100	05/16/2022	05/17/2022	B220995	S220545
MMAs	Water	SOP BAL-4100	05/16/2022	05/17/2022	B220995	S220545
Unk As Sp	Water	SOP BAL-4100	05/16/2022	05/17/2022	B220995	S220545

Sample Results

Sample	Analyte	Report Matrix	Basis	Result	Qualifier	MDL	MRL	Unit	Batch	Sequence
No Well										
2205123-01	As(III)	Water	D	28.0		0.200	1.05	µg/L	B220995	S220545
2205123-01	As(V)	Water	D	2.28		0.200	1.05	µg/L	B220995	S220545
2205123-01	DMAs	Water	D	≤ 0.250	U	0.250	1.05	µg/L	B220995	S220545
2205123-01	MMAs	Water	D	≤ 0.200	U	0.200	1.05	µg/L	B220995	S220545
2205123-01	Unk As Sp	Water	D	0.277	J	0.250	1.05	µg/L	B220995	S220545

BAL Report 2205123 Client PM: Amber L. Hudspeth Client Project: Drinking Water

Accuracy & Precision Summary

Batch: B220995 Lab Matrix: Water Method: SOP BAL-4100

Sample B220995-BS1	Analyte Blank Spike, (2137025)	Native	Spike	Result	Units	REC & Limits	RPD & Limits
	As(III)		5.000	4.641	µg/L	93% 75-125	
	As(V)		5.000	4.393	µg/L	88% 75-125	
	DMAs		5.210	5.349	µg/L	103% 75-125	
B220995-BS2	Blank Spike, (2207028)		4 400	4.070			
	MMAs		4.490	4.272	µg/L	95% 75-125	
B220995-DUP1	Duplicate, (2204279-04)						
	As(III)	ND		ND	µg/L		N/C 25
	As(V)	3.740		3.667	µg/L		2% 25
	DMAs	0.769		0.767	µg/L		0.2% 25
	MMAs	ND		ND	µg/L		N/C 25
	Unk As Sp	0.378		0.367	µg/L		3% 25
B220995-MS1	Matrix Spike, (2204279-04	n.					
B220333-IWI31	As(III)	, ND	5.225	4.850	µg/L	93% 75-125	
	As(V)	3.740	4.855	8.208	µg/L	92% 75-125	
	DMAs	0.769	5.000	5.614	µg/L	97% 75-125	
	MMAs	ND	5.000	4.581	µg/L	92% 75-125	
	IVIIVIAS	ND	5.000	4.501	µg/∟	92/0 73-123	
B220995-MSD1	Matrix Spike Duplicate, (2	204279-04))				
	As(III)	ND	5.225	4.752	µg/L	91% 75-125	2% 25
	As(V)	3.740	4.855	8.171	µg/L	91% 75-125	0.4% 25
	DMAs	0.769	5.000	5.471	µg/L	94% 75-125	3% 25
	MMAs	ND	5.000	4.570	µg/L	91% 75-125	0.2% 25

BAL Report 2205123 Client PM: Amber L. Hudspeth Client Project: Drinking Water

Method Blanks & Reporting Limits

MDL: 0.004 MRL: 0.021

MDL: 0.004 MRL: 0.021

MDL: 0.005

MRL: 0.021

Batch: B220995 Matrix: Water Method: SOP BAL-410	10	
Analyte: As(III)	0	
Sample	Result	Units
B220995-BLK1	0.00	µg/L
B220995-BLK2	0.00	µg/L
B220995-BLK3	0.00	µg/L
B220995-BLK4	0.00	µg/L
	Average: 0.000 Limit: 0.021	
Analyte: As(V)		
Sample	Result	Units
B220995-BLK1	0.00	µg/L
B220995-BLK2	0.00	µg/L
B220995-BLK3	0.00	µg/L
B220995-BLK4	0.00	µg/L
	Average: 0.000 Limit: 0.021	
Analyte: DMAs		
Sample	Result	Units
B220995-BLK1	0.00	µg/L
B220995-BLK2	0.00	µg/L
B220995-BLK3	0.00	µg/L
B220995-BLK4	0.00	µg/L
	Average: 0.000	

Limit: 0.021

BAL Report 2205123 Client PM: Amber L. Hudspeth Client Project: Drinking Water

Method Blanks & Reporting Limits

Analyte: MMAs

Sample	Result	Units	
B220995-BLK1	0.00	µg/L	
B220995-BLK2	0.00	µg/L	
B220995-BLK3	0.00	µg/L	
B220995-BLK4	0.00	µg/L	
	Average: 0.000		MDL: 0.004
	Limit: 0.021		MRL: 0.021

Analyte: Unk As Sp

Sample	Result	Units	
B220995-BLK1	0.00	µg/L	
B220995-BLK2	0.00	µg/L	
B220995-BLK3	0.00	µg/L	
B220995-BLK4	0.00	µg/L	
	Average: 0.000		
	Limit: 0.021		

MDL: 0.005 MRL: 0.021

Sample Containers

	ID: 2205123-01 Iple: No Well			atrix: Water `ype: Sample + Sum			cted: 05/09/2022 ived: 05/11/2022
Des	Container	Size	Lot	Preservation	P-Lot	рН	Ship. Cont.
A	Vacutainer	10 mL	22-0017	EDTA (vial)	n/a	n/a	Cooler - 2205123
В	XTRA_VOL	10 mL	22-0017	EDTA (vial)	n/a	n/a	Cooler - 2205123

Shipping Containers

Cooler - 2205123

Received: May 11, 2022 9:42 Tracking No: 2729 8408 8673 via FedEx Coolant Type: Ice Temperature: 4.8 °C Description: Cooler Damaged in transit? No Returned to client? No Comments: IR#: 33 Custody seals present? No Custody seals intact? No COC present? Yes

Client: Hudbatelli Contact: Ombly Hud Client Project ID: Drubu Samples Collected By: M	ED End + l Aspetta	Ship sa 18804 N Bothell, Vu W	n -of-C mples to: North Cree WA 9801 PO Numb Phone: Email: ()	ek Park 1 Der:	way,	Suite	100	1 I I	Mailing	er ID: : Addre eceipt	ss:	matio	n? (Time.	: <u>9:42</u>
Requested TAT	Collect	ion	Clier	nt Sample	Info	1	W.		BA	L Anal	yses R	Require	ed		Comments
(business days) 20 (standard) 15* 10* 5* Other* Sample ID 1 No Will 2 3 4 5 6 7 8 9 10	Date	Time	K Matrix Type	Number of Containers	Field Filtered? (Yes/No)	Preservation Type HCI /HNO ₃ /Other	Total Hg, EPA 1631	Methyl Hg, EPA 1630	ICP-MS Metals (specify)	As Species (specify) inorg, III, V, MMA, DMA	Se Species (specify) Se(IV), SeCN, Uknown	Filtration	Other (specify)	Other (specify)	Specify Here WENIC 35
Relinquished By	Date	:05h0 Z	2 Time:	1145	Re	elinquis	hed B	y:				Da	ate:		Time:
Received By: Willing Pageof List H	Date	:5/II/1 Contamii		9:41	То	tal Nur	nber o	of Pac	kages:			samo	les@br	ooksannlieg	I.com brooksapplied.com

.

APPENDIX B EDGE ANALYTICAL TESTING REPORT -FEBRUARY 2, 2022

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: North Well County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number: Lab Number: 21 90387 Collect Date: 12/9/21 10:15 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Lab Manager, Bend

IMONY SENIC SUUM SYLLIUM SOMIUM ROMIUM NIDE, AVAILABLE ORIDE	ND ND 0.0306 0.0050 ND ND ND ND 4.64 0.00026 J	MFL>10um mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.098 0.001 0.001 0.003 0.001 0.001 0.010 0.10 0.	7 0.006 0.010 2 0.004 0.005 0.1 0.2 4 0.015	sb bj bj bj bj crc crc	4072 4072 4072 4072 4072 4072	 100.2 200.8 200.8 200.8 200.8 200.8 200.8 200.8 200.8 OIA-1677-DW 300.0 	12/17/21 12/30/21 12/30/21 12/30/21 12/30/21 12/30/21 12/30/21 12/15/21	Analyzed by EMSL
ENIC IUM YLLIUM MIUM ROMIUM NIDE, AVAILABLE ORIDE D	0.0306 0.0050 ND ND ND ND 4.64 0.00026 J	mg/L mg/L mg/L mg/L mg/L mg/L	0.001 0.001 0.0003 0.001 0.001 0.010 0.10	0.010 2 0.004 0.005 0.1 0.2 4	bj bj bj bj bj crc	4072 4072 4072 4072 4072 4072	a 200.8 a 200.8 a 200.8 a 200.8 a 200.8 a 200.8 a OIA-1677-DW	12/30/21 12/30/21 12/30/21 12/30/21 12/30/21 12/15/21	
IUM YLLIUM MIUM ROMIUM NIDE, AVAILABLE ORIDE D	0.0050 ND ND ND ND 4.64 0.00026 J	mg/L mg/L mg/L mg/L mg/L	0.001 0.0003 0.001 0.001 0.010 0.10	2 0.004 0.005 0.1 0.2 4	bj bj bj bj crc	4072 4072 4072 4072 4072	a 200.8 a 200.8 a 200.8 a 200.8 a 200.8 a OIA-1677-DW	12/30/21 12/30/21 12/30/21 12/30/21 12/15/21	
YLLIUM MIUM ROMIUM NIDE, AVAILABLE ORIDE D	ND ND ND 4.64 0.00026 J	mg/L mg/L mg/L mg/L mg/L	0.0003 0.001 0.001 0.010 0.10	0.004 0.005 0.1 0.2 4	bj bj bj crc	4072 4072 4072 4072	a 200.8 a 200.8 a 200.8 a OIA-1677-DW	12/30/21 12/30/21 12/30/21 12/15/21	
OMIUM ROMIUM NIDE, AVAILABLE ORIDE D	ND ND ND 4.64 0.00026 J	mg/L mg/L mg/L mg/L	0.001 0.001 0.010 0.10	0.005 0.1 0.2 4	bj bj crc	4072 4072 4072	a 200.8 a 200.8 a OIA-1677-DW	12/30/21 12/30/21 12/15/21	
ROMIUM NIDE, AVAILABLE ORIDE D	ND ND 4.64 0.00026 J	mg/L mg/L mg/L	0.001 0.010 0.10	0.1 0.2 4	bj crc	4072 4072	a 200.8 a OIA-1677-DW	12/30/21 12/15/21	
NIDE, AVAILABLE ORIDE D	ND 4.64 0.00026 J	mg/L mg/L	0.010 0.10	0.2 4	crc	4072	a OIA-1677-DW	12/15/21	
ORIDE D	4.64 0.00026 J	mg/L	0.10	4					
D	0.00026 J				crc	4072	a 300.0	12/15/21	
		mg/L	0.001	0.015				12/10/21	1
CURY			0.001	0.015	bj	4072	a 200.8	12/30/21	
	ND	mg/L	0.0002	0.002	tjb	4072	a 245.1	12/22/21	
KEL	0.0003 J	mg/L	0.001		bj	4072	a 200.8	12/30/21	
RATE-N	ND H1	mg/L	0.10	10	crc	4072	a 300.0	12/15/21	
RITE-N	ND H1	mg/L	0.10	1	crc	4072	a 300.0	12/15/21	
AL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072	a 300.0	12/15/21	
ENIUM	ND	mg/L	0.002	0.05	bj	4072	a 200.8	12/30/21	
DIUM	192	mg/L	0.5	200	bj	4072	a 200.7	12/17/21	
LLIUM	ND	mg/L	0.0001	0.002	bj	4072	a 200.8	12/30/21	
BIDITY	8.4	NTU	0.10	1	crc	4072	a 180.1	12/14/21 16:05	
liological									
NIUM	ND	mg/L	0.001	0.030	bj	4072	a 200.8	12/30/21	
DSS ALPHA	ND	pCi/L	3	15	rjs		900.0	01/26/22	Analyzed by Pace PA200002-010
	ATE-N ITE-N AL NITRATE+NITRITE as N SNIUM UM LIUM BIDITY ological NIUM	ATE-N ND H1 ITE-N ND H1 ITE-N ND H1 INURATE+NITRITE as N ND H1 INUM 192 ILIUM 192 ILIUM ND ISIDITY 8.4 INUM ND	ATE-N ND H1 mg/L ITE-N ND H1 mg/L ITE-N ND H1 mg/L INIUM ND MD mg/L UM 192 mg/L LIUM ND mg/L BIDITY 8.4 NTU ological NIUM ND mg/L	ATE-N ND H1 mg/L 0.10 ITE-N ND H1 mg/L 0.10 IL NITRATE+NITRITE as N ND H1 mg/L 0.10 INIUM ND mg/L 0.002 UM 192 mg/L 0.5 ILIUM ND mg/L 0.0001 BIDITY 8.4 NTU 0.10 NUM ND mg/L 0.001	ATE-N ND H1 mg/L 0.10 10 ITE-N ND H1 mg/L 0.10 1 IL NITRATE+NITRITE as N ND H1 mg/L 0.10 10 SNIUM ND mg/L 0.002 0.05 UM 192 mg/L 0.5 200 LLIUM ND mg/L 0.0001 0.002 SIDITY 8.4 NTU 0.10 1 ological ND mg/L 0.001 0.030	ND H1 mg/L 0.10 10 crc ITE-N ND H1 mg/L 0.10 1 crc ITE-N ND H1 mg/L 0.10 1 crc IL NITRATE+NITRITE as N ND H1 mg/L 0.10 10 crc SNUM ND H1 mg/L 0.002 0.05 bj UM 192 mg/L 0.5 200 bj LLIUM ND mg/L 0.001 0.002 bj SIDITY 8.4 NTU 0.10 1 crc ological ND mg/L 0.001 0.030 bj	ATE-N ND H1 mg/L 0.10 10 crc 4072 ITE-N ND H1 mg/L 0.10 1 crc 4072 IL NITRATE+NITRITE as N ND H1 mg/L 0.10 10 crc 4072 SNUM ND H1 mg/L 0.10 10 crc 4072 SNUM ND H1 mg/L 0.10 10 crc 4072 UM 192 mg/L 0.002 0.05 bj 4072 LIUM ND mg/L 0.001 0.002 bj 4072 SIDITY S44 NTU 0.001 0.002 bj 4072 Ological ND mg/L 0.001 0.002 bj 4072	ATE-N ND H1 mg/L 0.10 10 crc 4072 a 300.0 ITE-N ND H1 mg/L 0.10 1 crc 4072 a 300.0 IL NITRATE+NITRITE as N ND H1 mg/L 0.10 10 crc 4072 a 300.0 SNIUM ND H1 mg/L 0.10 10 crc 4072 a 300.0 UM 192 mg/L 0.002 0.05 bj 4072 a 200.8 UM 192 mg/L 0.001 0.002 bj 4072 a 200.8 SIDITY ND mg/L 0.001 0.002 bj 4072 a 200.8 Ological ND mg/L 0.001 0.002 bj 4072 a 200.8	ATE-N ND H1 mg/L 0.10 10 crc 4072 a 300.0 12/15/21 ITE-N ND H1 mg/L 0.10 1 crc 4072 a 300.0 12/15/21 ILI NITRATE+NITRITE as N ND H1 mg/L 0.10 10 crc 4072 a 300.0 12/15/21 INIUM ND H1 mg/L 0.10 10 crc 4072 a 300.0 12/15/21 INIUM ND mg/L 0.002 0.05 bj 4072 a 200.8 12/15/21 UM 192 mg/L 0.002 0.05 bj 4072 a 200.8 12/17/21 LIUM ND mg/L 0.001 0.002 bj 4072 a 200.8 12/30/21 SIDITY ND mg/L 0.001 0.002 bj 4072 a 180.1 12/14/21 16:05 ological ND mg/L 0.001 0.002 bj 4072 a 180.1 12/14/21 16:05

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	Hudspeth Land an 7485 SW Joshua Powell Butte, OR	Ct
	System Name:	
	System ID Number:	
	Source Number:	
	Multiple Sources:	
	Sample Type:	
	Sample Purpose:	Investigative or Other
	Sample Location:	North Well
	County:	

Sample Number: Lab Number: 21_90387 Collect Date: 12/9/21 10:15 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

Reference Number: 21-46821

Michelle R Angland Lab Manager, Bend

EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
4100	GROSS BETA	7.29	pCi/L	4	50	rjs		900.0	01/26/22	Analyzed by Pace PA200002-010
	Radiological									
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk!	156	903.1/904.0	01/24/22	Analyzed by Pace

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Well 2 County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number: Lab Number: 21 90388 Collect Date: 12/9/21 12:45 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Lab Manager Bend

								Lab wan	ager, Bend	
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/20/21	Analyzed by EMSL
1074	ANTIMONY	ND	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21	
1005	ARSENIC	0.0025	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21	
1010	BARIUM	0.0144	mg/L	0.001	2	bj	4072 a	200.8	12/30/21	
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21	
1015	CADMIUM	ND	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21	
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21	
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21	
1025	FLUORIDE	0.21	mg/L	0.10	4	crc	4072 a	300.0	12/14/21	
1030	LEAD	0.0008 J	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21	
1035	MERCURY	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/14/21	
1036	NICKEL	0.0010	mg/L	0.001		bj	4072 a	200.8	12/30/21	
1040	NITRATE-N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:53	
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 23:53	
1038	TOTAL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:53	
1045	SELENIUM	ND	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21	
1052	SODIUM	42.1	mg/L	0.5	200	bj	4072 a	200.7	12/17/21	
1085	THALLIUM	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21	
0100	TURBIDITY	3.6	NTU	0.10	1	crc	4072 a	180.1	12/14/21 16:07	
4006	Radiological URANIUM	ND	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21	
4000	GROSS ALPHA	ND	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by Pace
4100	GROSS BETA	ND	pCi/L	4	50	rjs	156	900.0	01/17/22	Analyzed by Pace
	Radiological									
NOTES:										

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

7485 8	eth Land and Water SW Joshua Ct Butte, OR 97753	Reference Number: Project:	21-46821 Well Samp
	vstem Name:	Sample Number:	
	ID Number:	Lab Number:	21 90388
Sou	rce Number:	Collect Date:	_
Mult	ple Sources:	Date Received:	12/10/21
S	ample Type:	Report Date:	2/2/22
Sam	ple Purpose: Investigative or Other	Sampled By:	AH, EW
Sam	ple Location: Well 2	Sampler Phone:	
	County:	Approved by:	anp,bj,mcs
		Authorized by:	`c

ample Number: Lab Number: 21_90388 Collect Date: 12/9/21 12:45 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

Michelle R Angland Lab Manager, Bend

COMMENT Analyzed by Pace Analyzed by Pace
Pace Analyzed by Pace
Analyzed by Pace
Analyzed by Pace

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Well 6 County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number: Lab Number: 21 90389 Collect Date: 12/9/21 11:05 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Lab Manager Bend

								Lab Man	ager, Bend	
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/20/21	Analyzed by EMSL
1074	ANTIMONY	ND	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21	
1005	ARSENIC	0.00997	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21	
1010	BARIUM	0.0139	mg/L	0.001	2	bj	4072 a	200.8	12/30/21	
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21	
1015	CADMIUM	ND	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21	
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21	
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21	
1025	FLUORIDE	1.03	mg/L	0.10	4	crc	4072 a	300.0	12/14/21	
1030	LEAD	0.0007 J	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21	
1035	MERCURY	ND	mg/L	0.0002	0.002	tjb	4072 a	245.1	12/22/21	
1036	NICKEL	0.0019	mg/L	0.001		bj	4072 a	200.8	12/30/21	
1040	NITRATE-N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:09	
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 23:09	
1038	TOTAL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:09	
1045	SELENIUM	0.0008 J	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21	
1052	SODIUM	128	mg/L	0.5	200	bj	4072 a	200.7	12/17/21	
1085	THALLIUM	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21	
0100	TURBIDITY	1.2	NTU	0.10	1	crc	4072 a	180.1	12/14/21 16:12	
4006	Radiological URANIUM	0.0001 J	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21	
4000	GROSS ALPHA	ND	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by Pace
4100	GROSS BETA	ND	pCi/L	4	50	rjs	156	900.0	01/17/22	Analyzed by Pace
	Radiological									
NOTES:										

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	Hudspeth Land an 7485 SW Joshua Powell Butte, OR	Ct	Reference Number: Project:	21-46821 Well Samp
	System Name:	51155	Sample Number:	
	System ID Number:		Lab Number:	21 90389
	Source Number:		Collect Date:	_
	Multiple Sources:		Date Received:	12/10/21
	Sample Type:		Report Date:	2/2/22
	Sample Purpose:	Investigative or Other	Sampled By:	AH, EW
	Sample Location:	Well 6	Sampler Phone:	
	County:		Approved by:	anp,bj,mcs
			Authorized by:	` (

ample Number: Lab Number: 21_90389 Collect Date: 12/9/21 11:05 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

UN & stight

Michelle R Angland Lab Manager, Bend

EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk1	156	903.1/904.0	01/24/22	Analyzed by
										Pace

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Well 7 County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number: Lab Number: 21 90390 Collect Date: 12/9/21 11:45 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Lab Manager Bend

	Lab Manager, Bend									
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/20/21	Analyzed by EMSL
1074	ANTIMONY	0.0018	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21	
1005	ARSENIC	0.0076	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21	
1010	BARIUM	0.0084	mg/L	0.001	2	bj	4072 a	200.8	12/30/21	
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21	
1015	CADMIUM	ND	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21	
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21	
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21	
1025	FLUORIDE	0.83	mg/L	0.10	4	crc	4072 a	300.0	12/14/21	
1030	LEAD	0.00098 J	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21	
1035	MERCURY	ND	mg/L	0.0002	0.002	tjb	4072 a	245.1	12/22/21	
1036	NICKEL	0.0005 J	mg/L	0.001		bj	4072 a	200.8	12/30/21	
1040	NITRATE-N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:31	
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 23:31	
1038	TOTAL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 23:31	
1045	SELENIUM	0.0006 J	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21	
1052	SODIUM	86.7	mg/L	0.5	200	bj	4072 a	200.7	12/17/21	
1085	THALLIUM	0.0002	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21	
0100	TURBIDITY	0.48	NTU	0.10	1	crc	4072 a	180.1	12/14/21 16:17	
4006	Radiological URANIUM	0.00008 J	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21	
4000	GROSS ALPHA	ND	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by Pace
4100	GROSS BETA	ND	pCi/L	4	50	rjs	156	900.0	01/17/22	Pace Analyzed by Pace
	Radiological									
NOTES:										

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

7	Hudspeth Land ar 7485 SW Joshua	Ct Proje	er: 21-46821 ct: Well Samp
ł	Powell Butte, OR	97753	
	System Name:	Sample Numb	er:
	System ID Number:	Lab Number	er: 21_90390
	Source Number:	Collect Da	te: 12/9/21 11
	Multiple Sources:	Date Receive	d: 12/10/21
	Sample Type:	Report Da	te: 2/2/22
	Sample Purpose:	Investigative or Other Sampled E	sy: AH, EW
	Sample Location:	Well 7 Sampler Phor	e:
	County:	Approved b	y: anp,bj,mcs
		Authorized b	y:

mple Number: Lab Number: 21_90390 Collect Date: 12/9/21 11:45 ate Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW ampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

Michelle R Angland Lab Manager, Bend

									ugei, Denu	
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk1	156	903.1/904.0	01/24/22	Analyzed by Pace
NOTES		-	-	-		•	•			•

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Well 8 County:

Reference Number: 21-46821 Project: Well Sampling

)
1
1

Lab Manager Bend

	Lab Manager, Bend									
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/20/21	Analyzed by EMSL
1074	ANTIMONY	0.0011	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21	
1005	ARSENIC	0.0036	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21	
1010	BARIUM	0.0129	mg/L	0.001	2	bj	4072 a	200.8	12/30/21	
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21	
1015	CADMIUM	0.0002 J	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21	
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21	
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21	
1025	FLUORIDE	0.92	mg/L	0.10	4	crc	4072 a	300.0	12/14/21	
1030	LEAD	0.0202	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21	
1035	MERCURY	ND	mg/L	0.0002	0.002	tjb	4072 a	245.1	12/22/21	
1036	NICKEL	0.0116	mg/L	0.001		bj	4072 a	200.8	12/30/21	
1040	NITRATE-N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 22:47	
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 22:47	
1038	TOTAL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 22:47	
1045	SELENIUM	ND	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21	
1052	SODIUM	69.1	mg/L	0.5	200	bj	4072 a	200.7	12/17/21	
1085	THALLIUM	0.0003	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21	
0100	TURBIDITY	16	NTU	1	1	crc	4072 a	180.1	12/14/21 16:25	
4006	Radiological URANIUM	0.0004 J	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21	
4000	GROSS ALPHA	11.2	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by Pace
4100	GROSS BETA	7.12	pCi/L	4	50	rjs	156	900.0	01/17/22	Analyzed by Pace
	Radiological									
NOTES:										

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	Hudspeth Land an 7485 SW Joshua Powell Butte, OR	Ct	Reference Number: Project:	21-46821 Well Samp
	System Name:	51155	Sample Number:	
	System ID Number:		Lab Number:	21 90391
	Source Number:		Collect Date:	_
	Multiple Sources:		Date Received:	12/10/21
	Sample Type:		Report Date:	2/2/22
	Sample Purpose:	Investigative or Other	Sampled By:	AH, EW
	Sample Location:	Well 8	Sampler Phone:	
	County:		Approved by:	anp,bj,mcs
			Authorized by:	` (

ample Number: Lab Number: 21_90391 Collect Date: 12/9/21 12:10 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

MN & tigh

Michelle R Angland Lab Manager, Bend

									ugei, Denu	· · · · · · · · · · · · · · · · · · ·
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk1	156	903.1/904.0	01/24/22	Analyzed by
										Pace
NOTES			-				•	-		

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Well 9 County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number: Lab Number: 21 90392 Collect Date: 12/9/21 14:00 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Lab Manager, Bend

									ager, Bend	
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/21/21	Analyzed by EMSL
1074	ANTIMONY	0.00028 J	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21	
1005	ARSENIC	0.0014	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21	
1010	BARIUM	0.0053	mg/L	0.001	2	bj	4072 a	200.8	12/30/21	
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21	
1015	CADMIUM	ND	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21	
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21	
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21	
1025	FLUORIDE	0.72	mg/L	0.10	4	crc	4072 a	300.0	12/14/21	
1030	LEAD	0.0049	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21	
1035	MERCURY	ND	mg/L	0.0002	0.002	tjb	4072 a	245.1	12/22/21	
1036	NICKEL	0.0026	mg/L	0.001		bj	4072 a	200.8	12/30/21	
1040	NITRATE-N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 22:25	
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 22:25	
1038	TOTAL NITRATE+NITRITE as N	ND H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 22:25	
1045	SELENIUM	ND	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21	
1052	SODIUM	68.7	mg/L	0.5	200	bj	4072 a	200.7	12/17/21	
1085	THALLIUM	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21	
0100	TURBIDITY	2.2	NTU	0.10	1	crc	4072 a	180.1	12/14/21 16:28	
4006	Radiological URANIUM	0.0001 J	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21	
4000	GROSS ALPHA	ND	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by
4100	GROSS BETA	ND	pCi/L	4	50	rjs	156	900.0	01/17/22	Pace Analyzed by Pace
	Radiological									
NOTES:										

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name:	Hudspeth Land an 7485 SW Joshua		Reference Numbe Projec	r: 21-46821 t: Well Samp
	Powell Butte, OR	97753		
	System Name:		Sample Numbe	r:
	System ID Number:		Lab Numbe	r: 21_90392
	Source Number:		Collect Date	e: 12/9/21 14
	Multiple Sources:		Date Received	: 12/10/21
	Sample Type:		Report Date	: 2/2/22
	Sample Purpose:	Investigative or Other	Sampled B	/: AH, EW
	Sample Location:	Well 9	Sampler Phone):
	County:		Approved b	/: anp,bj,mcs
			Authorized b	/: `

Sample Number: Lab Number: 21_90392 Collect Date: 12/9/21 14:00 Date Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW Sampler Phone: Approved by: anp,bj,mcs,tjb Authorized by:

Project: Well Sampling

Michelle R Angland Lab Manager, Bend

EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk1	156	903.1/904.0	01/24/22	Analyzed by
										Pace

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753 System Name: System ID Number: Source Number: Multiple Sources: Sample Type: Sample Purpose: Investigative or Other Sample Location: Spring Line County:

Reference Number: 21-46821 Project: Well Sampling

Sample Number:	
Lab Number:	21_90393
Collect Date:	12/9/21 14:40
Date Received:	12/10/21
Report Date:	2/2/22
Sampled By:	AH, EW
Sampler Phone:	
Approved by:	anp,bj,mcs,tjb
Authorized by:	it l

Michelle R Angland Lab Manager, Bend

	Lab Manager, Bend											
EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT		
1094	ASBESTOS	ND	MFL>10um	0.098	7	sb	186	100.2	12/21/21	Analyzed by EMSL		
1074	ANTIMONY	ND	mg/L	0.001	0.006	bj	4072 a	200.8	12/30/21			
1005	ARSENIC	ND	mg/L	0.001	0.010	bj	4072 a	200.8	12/30/21			
1010	BARIUM	0.0047	mg/L	0.001	2	bj	4072 a	200.8	12/30/21			
1075	BERYLLIUM	ND	mg/L	0.0003	0.004	bj	4072 a	200.8	12/30/21			
1015	CADMIUM	ND	mg/L	0.001	0.005	bj	4072 a	200.8	12/30/21			
1020	CHROMIUM	ND	mg/L	0.001	0.1	bj	4072 a	200.8	12/30/21			
1024	CYANIDE, AVAILABLE	ND	mg/L	0.010	0.2	crc	4072 a	OIA-1677-DW	12/15/21			
1025	FLUORIDE	ND	mg/L	0.10	4	crc	4072 a	300.0	12/14/21			
1030	LEAD	0.0001 J	mg/L	0.001	0.015	bj	4072 a	200.8	12/30/21			
1035	MERCURY	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/14/21			
1036	NICKEL	0.0002 J	mg/L	0.001		bj	4072 a	200.8	12/30/21			
1040	NITRATE-N	0.21 H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 21:19			
1041	NITRITE-N	ND H1	mg/L	0.10	1	crc	4072 a	300.0	12/14/21 21:19			
1038	TOTAL NITRATE+NITRITE as N	0.21 H1	mg/L	0.10	10	crc	4072 a	300.0	12/14/21 21:19			
1045	SELENIUM	ND	mg/L	0.002	0.05	bj	4072 a	200.8	12/30/21			
1052	SODIUM	4.2	mg/L	0.5	200	bj	4072 a	200.7	12/17/21			
1085	THALLIUM	ND	mg/L	0.0001	0.002	bj	4072 a	200.8	12/30/21			
0100	TURBIDITY	0.41	NTU	0.10	1	crc	4072 a	180.1	12/14/21 16:01			
4006	Radiological URANIUM	ND	mg/L	0.001	0.030	bj	4072 a	200.8	12/30/21			
4000	GROSS ALPHA	ND	pCi/L	3	15	rjs	156	900.0	01/17/22	Analyzed by		
4100	GROSS BETA	ND	pCi/L	4	50	rjs	156	900.0	01/17/22	Pace Analyzed by Pace		
	Radiological											
NOTES:												

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946 Bend, OR Microbiology (e)

20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 2 of 2

INORGANIC COMPOUNDS (IOC) REPORT

Client Name: Hudspeth Land 7485 SW Joshu Powell Butte, OI	a Ct	Reference Number: Project:	21-46821 Well Samp
System Name	:	Sample Number:	
System ID Number		Lab Number:	21 90393
Source Number		Collect Date:	—
Multiple Sources	:	Date Received:	12/10/21
Sample Type	:	Report Date:	2/2/22
Sample Purpose	: Investigative or Other	Sampled By:	AH, EW
Sample Location	: Spring Line	Sampler Phone:	
County		Approved by:	anp,bj,mcs
		Authorized by:	`(

nple Number: Lab Number: 21_90393 Collect Date: 12/9/21 14:40 te Received: 12/10/21 Report Date: 2/2/22 Sampled By: AH, EW mpler Phone: Approved by: anp,bj,mcs,tjb uthorized by:

Project: Well Sampling

Michelle R Angland Lab Manager, Bend

EPA#	ANALYTES	RESULTS	UNITS	LRL	MCL	Analyst	Lab Code*	METHOD	Analyzed	COMMENT					
	Radium 226	ND	pCi/L	1		mk1	156	903.1	01/24/22	Analyzed by Pace					
	Radium 228	ND	pCi/L	1	5	val		904.0	01/20/22	Analyzed by Pace					
	Radium 226,228 (combined)	ND	pCi/L	1	5	mk1	156	903.1/904.0	01/24/22	Analyzed by Pace					
NOTES															

APPENDIX C EDGE ANALYTICAL TESTING REPORT -MAY 27, 2022

Bellingham, WA Microbiology (b) 805 Orchard Dr Ste 4 - Bellingham, WA 98225 - 360.715.1212

Portland, OR Microbiology/Chemistry (c) 9725 SW Commerce Cr Ste A2 - Wilsonville, OR 97070 - 503.682.7802

Corvallis, OR Microbiology/Chemistry (d) 1100 NE Circle Blvd, Ste 130 - Corvallis, OR 97330 - 541.753.4946

Bend, OR Microbiology (e) 20332 Empire Blvd Ste 4 - Bend, OR 97701 - 541.639.8425

Page 1 of 6

Draft 5.27.22 MRA

Data Report

Client Name: Hudspeth Land and Water 7485 SW Joshua Ct Powell Butte, OR 97753

Reference Number: 22-15633 Project: Drinking Water

Report Date: 5/27/22

Date Received: 5/10/22 Approved by: anp,bj,crc,jnr,ljh,mra,pap,rlv,tjb Authorized by:

UN & stight

Michelle R Angland Lab Manager, Bend

Sample Deso	Sample Description: Drinking Water North Well Matrix W Sample Date: 5/9/22 10:24 am											
Lab N	lumber: 29937 Sample Co	mment:							Co	ollected	By: Amber	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyzed	d Analyst	Batch	Comment
E-10617	TURBIDITY	1.9 H3	0.10		NTU	1.0	180.1	с	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	ND	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.11	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-96-5	MANGANESE	0.0157	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7440-50-8	COPPER	ND	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	ND	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	106	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
16984-48-8	FLUORIDE	4.92	0.1	0.037	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	239	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	ND NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-1.08			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	ND H3	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 4.5
E-11734	ODOR	ND			TON	1.0	SM2150	а	5/13/22	CRC	ODOR_220513	Temp(C) : 40.7
E-14506	ALKALINITY	58.8	2		mg CaCO3/L	2.0	SM2320 B	а	5/16/22	ADL	ALK_220516	
E-10139	HYDROGEN ION (pH)	8.24 H5			pH Units	1.0	SM4500-H+ B		5/10/22	KRH	EpH_220510	Temp (C) : 14.
14265-44-2	ORTHO-PHOSPHATE	0.04 H3	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.039	0.010	0.0021	mg/L	1.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	ND	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	10.31	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	0.20	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

Sample Description: Drinking Water Well 2 Matrix W Sample Date: 5/9/22 2:05 pm												2:05 pm
Lab N	Number: 29938 Sample Co	mment:							C	ollected	By: Amber	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyze	ed Analys	Batch	Comment
E-10617	TURBIDITY	3.3 H1	0.10		NTU	1.0	180.1	с	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	0.03	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.75	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-96-5	MANGANESE	2.03	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7440-50-8	COPPER	0.002	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	0.0171	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	18.2	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	15.0	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	4.0 NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-0.39			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	10	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 7.0
E-11734	ODOR	ND	1		TON	1.0	SM2150	а	5/11/22	CRC	ODOR_220511	Temp (C): 40.4
E-14506	ALKALINITY	225	2		mg CaCO3/L	2.0	SM2320 B	а	5/16/22	ADL	ALK_220516	
E-10139	HYDROGEN ION (pH)	7.40 H5			pH Units	1.0	SM4500-H+ E	3	5/10/22	KRH	EpH_220510	Temp (C) : 13.
14265-44-2	ORTHO-PHOSPHATE	0.29	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.321	0.010	0.0021	mg/L	1.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	ND	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	49.34	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	0.99	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

•	cription: Drinking Water Well 6 Jumber: 29939 Sample Co	mment:						Matrix \		•	Date: 5/9/22 By: Amber	12:05 pm
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyze	ed Analys	Batch	Comment
E-10617	TURBIDITY	1.2 H1	0.10		NTU	1.0	180.1	с	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	0.02	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.12	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-96-5	MANGANESE	0.715	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7440-50-8	COPPER	0.0052	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	ND	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	77.0	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	85.0	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	ND NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-1.06			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	15	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 4.5
E-11734	ODOR	1.06	1		TON	1.0	SM2150	а	5/11/22	CRC	ODOR_220511	Temp (C): 39.6 sulfur was smelled
E-14506	ALKALINITY	108	2		mg CaCO3/L	2.0	SM2320 B	а	5/16/22	ADL	ALK_220516	
E-10139	HYDROGEN ION (pH)	7.37 H5			pH Units	1.0	SM4500-H+ B		5/10/22	KRH	EpH_220510	Temp (C) : 12.5
14265-44-2	ORTHO-PHOSPHATE	0.47 H1	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.508	0.020	0.0042	mg/L	2.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	ND	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	22.56	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	1.01	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

Sample Des	cription: Drinking Water Well 7							Matrix \	N Sa	ample [Date: 5/9/22	11:24 am
Lab N	Number: 29940 Sample Co	omment:							С	ollected	d By: Amber	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyze	d Analys	t Batch	Comment
E-10617	TURBIDITY	0.7 H1	0.10		NTU	1.0	180.1	с	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	0.06	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.42	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-96-5	MANGANESE	0.796	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7440-50-8	COPPER	0.0247	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	0.0069	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	68.4	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	74.4	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	ND NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-0.42			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	15	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 4.5
E-11734	ODOR	ND	1		TON	1.0	SM2150	а	5/11/22	CRC	ODOR_220511	Temp (C): 39.4
E-14506	ALKALINITY	109	1		mg CaCO3/L	1.0	SM2320 B	а	5/16/22	ADL	ALK_220516	
E-10139	HYDROGEN ION (pH)	8.08 H5			pH Units	1.0	SM4500-H+ B		5/10/22	KRH	EpH_220510	Temp (C) : 12.7
14265-44-2	ORTHO-PHOSPHATE	0.43 H1	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.481	0.020	0.0042	mg/L	2.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	ND	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	22.05	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	0.87	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

Sample Description: Drinking Water Well 9 Matrix W Sample Date: 5/9/22 1:37 pm Lab Number: 29941 Sample Comment: Collected By: Amber												
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyze			Comment
E-10617	TURBIDITY	1.55 H1	0.10		NTU	1.0	180.1	c	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	0.04	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.17	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	- 200.7_220518B	
7439-96-5	MANGANESE	0.0420	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ		
7440-50-8	COPPER	0.0246	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	0.0036	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	25.8	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	ND	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	ND NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-0.98			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	25	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 6.5
E-11734	ODOR	ND			TON	1.0	SM2150	а	5/13/22	CRC	ODOR_220513	Temp (C) : 40.1
E-14506	ALKALINITY	161	2		mg CaCO3/L	2.0	SM2320 B	а	5/20/22	ADL	ALK_220520	
E-10139	HYDROGEN ION (pH)	8.17 H5			pH Units	1.0	SM4500-H+ B		5/10/22	KRH	EpH_220510	Temp (C) : 12.8
14265-44-2	ORTHO-PHOSPHATE	0.43	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.470	0.020	0.0042	mg/L	2.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	0.06	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	34.41	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	1.60	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.

Sample Description: Drinking Water Springline Matrix W Sample Date: 5/9/22 2:34 pm												
Lab N	Number: 29942 Sample Co	mment:							С	ollected	By: Amber	
CAS ID#	Parameter	Result	PQL	MDL	Units	DF	Method	Lab	Analyze	d Analys	t Batch	Comment
E-10617	TURBIDITY	3.6 H1	0.10		NTU	1.0	180.1	с	5/12/22	RLV	cturb_220512	
7429-90-5	ALUMINUM	0.59	0.010	0.004	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-89-6	IRON	0.37	0.05	0.001	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7439-96-5	MANGANESE	0.0045	0.001	0.0002	mg/L	1.0	200.7	а	5/18/22	BJ	200.7_220518B	
7440-50-8	COPPER	0.0028	0.002	0.00027	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-22-4	SILVER	ND	0.01	0.00013	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
7440-66-6	ZINC	0.0065	0.0025	0.0001	mg/L	1.0	200.8	а	5/13/22	BJ	200.8_220513A2	
16887-00-6	CHLORIDE	0.3	0.1	0.07	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
14808-79-8	SULFATE	0.5	0.2	0.025	mg/L	1.0	300.0	а	5/12/22	ADL	IC06_220511A	
E-10162	TOTAL SUSPENDED SOLIDS	ND NN	2		mg/L	1.0	I-3765-85	с	5/13/22	PAP	ctss_220513	
NA	CORROSIVITY	-2.81			SI	1.0	SM203	а	5/27/22	BJ	COR_220527	
E-11712	COLOR	ND	5		Color Units	1.0	SM2120 B	с	5/11/22	PAP	ccolor_220511	pH: 4.5
E-11734	ODOR	ND	1		TON	1.0	SM2150	а	5/11/22	CRC	ODOR_220511	Temp (C): 40.4
E-14506	ALKALINITY	37.7	1		mg CaCO3/L	1.0	SM2320 B	а	5/20/22	ADL	ALK_220520	
E-10139	HYDROGEN ION (pH)	6.47 H5			pH Units	1.0	SM4500-H+ B		5/10/22	KRH	EpH_220510	Temp (C) : 11.5
14265-44-2	ORTHO-PHOSPHATE	0.06	0.01	0.0073	mg/L	1.0	SM4500-P F	с	5/11/22	JNR	cpo4_220511	
7723-14-0	TOTAL PHOSPHORUS	0.072	0.010	0.0021	mg/L	1.0	SM4500-P F/SM4500-P B(5)	а	5/20/22	TJB	TPHOS_220520	
18496-25-8	SULFIDE AS HYDROGEN SULFIDE	0.06	0.05	0.044	mg/L	1.0	SM4500-S2 F	а	5/11/22	TJB	h2s_220511a	
	TOTAL INORGANIC CARBON	7.67	0.5		mg/L	1.0	SM5310 B	а	5/12/22	BJ	TIC_220512A	
E-10195	TOTAL ORGANIC CARBON	1.27	0.15	0.045	mg/L	1.0	SM5310 B	а	5/14/22	BJ	TOC_220513A	

Notes:

ND = Not detected above the listed practical quantitation limit (PQL) or not above the Method Detection Limit (MDL), if requested.